Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method ...Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method to study the influence of the windshield in-clination angle of a passenger car on pedestrian head/brain injury due to CPC accidents.The range of the windshield inclination angle was set at 24°-50°,with an interval of 2°.The results show that the windshield angle significantly affects the pedestrian kine-matics and exerts different effects on the head injury when evaluating with various head injury criteria.Regarding the head peak linear/rotational acceleration and acceleration-based head injury criterion(HIC)/rotational injury criterion(RIC),the predictions at the secondary impact stage have no clear relationship with the windshield angle(R^(2)=0.04,0.07,0.03 and 0.26,respectively)and their distributions are scattered.In the primary impact,the peak linear acceleration and HIC show a weak trend of first decreasing and then increasing with the increasing of the windshield angle,and the rotational acceleration and RIC tend to remain relatively con-stant.Regarding the cum ulative strain dama ge measure(CSDM)criterion,the predictions at the primary impact are slightly lower than those at the secondary impact,and the trend of first decreasing and then increasing with the increase in the windshield angle is observed at both impact stages.When the windshield inclination angle is approximately 32°-40°,the head injury severity in both impact phases is generally lower than that predicted at other windshield angles.展开更多
Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury a...Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs.Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns.Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF)during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes.Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF,greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment,and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries.Conclusion:Small knee flexion angle,large posterior GRF,and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.Copyright(c)2012,Shanghai University of Sport.Production and hosting by Elsevier B.V.All rights reserved.展开更多
A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with bl...A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.展开更多
A biomechanical model is developed and validated for breathing-induced deformation of human lung. Specifically, a subject-specific poro-elastic lung model is used to predict the displacement over the breathing cycle a...A biomechanical model is developed and validated for breathing-induced deformation of human lung. Specifically, a subject-specific poro-elastic lung model is used to predict the displacement over the breathing cycle and compared with displacement derived from high resolution image registration. The lung geometry is derived from four-dimensional computed tomography (4DCT) scan dataset of two human subjects. The heterogeneous Young’s modulus is estimated using inverse analysis method. The numerical simulation uses fluid-structure interaction technique to solve the coupled airflow equations and structural dynamics of the lung tissue. The modelled displacement is validated by comparison with the 4DCT registration results.展开更多
Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engin...Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-展开更多
4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumul...4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.展开更多
The biomechanical behavior of dog's duodenum and jejunum were studied and a formulation of the stress strain relation is presented in this paper. The results obtained indicated that the exponential coefficient α...The biomechanical behavior of dog's duodenum and jejunum were studied and a formulation of the stress strain relation is presented in this paper. The results obtained indicated that the exponential coefficient α and the incremental duodenum of the elastic modulus are both larger than those of the jejunum. It means that the duodenum is more deformable than the jejunum. The experimental results of this work provide basal data for kinematics study of a robotic endoscope.展开更多
Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with ...Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with the recent rapid development of techniques.Under dynamic loadings,the creep response of epithelial monolayers shows a power-law dependence on the time with an exponent larger than that of a single cell.Under static loadings,the elastic modulus of epithelial monolayers is nearly two orders of magnitude higher than that of a single cell.To date,there is a lack of a mechanical model that can describe both the dynamic and static mechanical responses of epithelial monolayers.Here,based on the structural features of cells,we establish a multi-scale structural model of cell monolayers.It is found that the proposed model can naturally capture the dynamic and static mechanical properties of cell monolayers.Further,we explore the effects of the cytoskeleton and the membrane moduli on the dynamical power-law rheological responses and static stress-strain relations of a single cell and cell monolayers,respectively.Our work lays the foundation for subsequent studies of the mechanical behavior of more complex epithelial tissues.展开更多
A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relatio...A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relationship and parameters in skin tissue.A structural approach determines the macroscopic mechanical response of the skin tissue from its underlying structural components.The collagen fibers were embedded into a block of elastic gel matrix.The constitutive matrix of skin tissue consisted of both of collagen fiber and elastic gel block according to the rule that the collagen fibers were undulated with the ability to resist load only when completely straightened.The nonlinear and anisotropic mechanical responses were largely due to varying degree of fiber undulation.Statistical distributions were used to determine the extent of fiber undulation.The comparison of stress-strain plots between the modeling and experimental results showed the good coordination of the both.Some model parameters were discussed to compute the macroscopic mechanical response when the tissue block was subject to a simple deformation mode.展开更多
This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model cons...This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.展开更多
Broadly accepted is that most knee injuries result from increased vertical forces,usually induced by an incidental ski fall,collision,or a high jump.We present a new non-contact knee injury mechanism that can happen d...Broadly accepted is that most knee injuries result from increased vertical forces,usually induced by an incidental ski fall,collision,or a high jump.We present a new non-contact knee injury mechanism that can happen during a ski turn.Such an injury is governed by a sudden inward turn of the inner ski and consequent swing of the inner leg followed by a nearly instant stop when locked by hip and knee joints.The model provides predictive results for a lateral tibial plateau compression fracture because several simplifications have been made.We confirmed that the modelled compression stresses at typical skiing conditions and with typical skiing equipment can provoke serious knee injuries.The awareness of skiers and skiing equipment industry of the described knee injury mechanism can act as an important injury-prevention factor.展开更多
This paper presents a novel method for assisting surgeons in automatically computing an optimal surgical plan by directly specifying the desired correction to a facial outline. First, the desired facial appearance is ...This paper presents a novel method for assisting surgeons in automatically computing an optimal surgical plan by directly specifying the desired correction to a facial outline. First, the desired facial appearance is designed using a 3D sculpturing tool, while the cut regions of the skull are defined based on facial anatomy. Then, the deformation of the face meshes is performed using an improved biomechanical model in which virtual external forces are driven by the displacements corresponding to the differences of node coordinates between the original and specified face meshes, and free nodes and fixed nodes are defined in terms of the contact surfaces between the soft tissues and the bones within the cut regions. Finally, the shape of the contact surfaces is updated following the deformation of the soft tissues. After registering the deformable contact surfaces and the cut surfaces, the final positions of the cut bones are estimated. Evaluation of preliminary experimental results quantitatively shows the effectiveness of the proposed approach.展开更多
基金supported by the National Natural Science Funds for Distinguished Young Sc holar(Gr ant No.52325211)National Natural Science Foundation of China(Grants No.52172399 and 52372348)+1 种基金Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Pro vince,Natural Science Foundation of Changsha(Grant No.KQ2208235)Chongqing Ph.D.‘Through Train’Scientific Research Project(Grant No.s1202100000528).
文摘Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method to study the influence of the windshield in-clination angle of a passenger car on pedestrian head/brain injury due to CPC accidents.The range of the windshield inclination angle was set at 24°-50°,with an interval of 2°.The results show that the windshield angle significantly affects the pedestrian kine-matics and exerts different effects on the head injury when evaluating with various head injury criteria.Regarding the head peak linear/rotational acceleration and acceleration-based head injury criterion(HIC)/rotational injury criterion(RIC),the predictions at the secondary impact stage have no clear relationship with the windshield angle(R^(2)=0.04,0.07,0.03 and 0.26,respectively)and their distributions are scattered.In the primary impact,the peak linear acceleration and HIC show a weak trend of first decreasing and then increasing with the increasing of the windshield angle,and the rotational acceleration and RIC tend to remain relatively con-stant.Regarding the cum ulative strain dama ge measure(CSDM)criterion,the predictions at the primary impact are slightly lower than those at the secondary impact,and the trend of first decreasing and then increasing with the increase in the windshield angle is observed at both impact stages.When the windshield inclination angle is approximately 32°-40°,the head injury severity in both impact phases is generally lower than that predicted at other windshield angles.
文摘Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs.Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns.Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF)during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes.Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF,greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment,and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries.Conclusion:Small knee flexion angle,large posterior GRF,and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.Copyright(c)2012,Shanghai University of Sport.Production and hosting by Elsevier B.V.All rights reserved.
文摘A simplified finite element model of a human thorax had been developed for probing into the mechani- cal response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian- Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distri- butions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human tho- rax were obtained from the finite element model, and were then applied in the mathematical model as the boundary con- ditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axels- son's model.
文摘A biomechanical model is developed and validated for breathing-induced deformation of human lung. Specifically, a subject-specific poro-elastic lung model is used to predict the displacement over the breathing cycle and compared with displacement derived from high resolution image registration. The lung geometry is derived from four-dimensional computed tomography (4DCT) scan dataset of two human subjects. The heterogeneous Young’s modulus is estimated using inverse analysis method. The numerical simulation uses fluid-structure interaction technique to solve the coupled airflow equations and structural dynamics of the lung tissue. The modelled displacement is validated by comparison with the 4DCT registration results.
基金Research Grant Council of Hong Kong (GRF Project nos PolyU5331 /07E,PolyU5352 /08E)a grant from Ministry of Sciences and Technology,China (No 2006BAI22B00)
文摘Rehabilitation engineering aims in the upmost degree to restore the lost functions for those persons with physical disability. Biomechanical modeling has been widely used for different purposes in rehabilitation engineering to understand the bio-
基金This work was supported in part by grants from the US National Institutes of Health,Nos.R01 EB020366 and R01 EB027898the Cancer Prevention and Research Institute of Texas,Nos.RP130109 and RP160661from the University of Texas Southwestern Medical Center(Radiation Oncology Seed Grant).
文摘4-Dimensional cone-beam computed tomography(4D-CBCT)offers several key advantages over conventional 3DCBCT in moving target localization/delineation,structure de-blurring,target motion tracking,treatment dose accumulation and adaptive radiation therapy.However,the use of the 4D-CBCT in current radiation therapy practices has been limited,mostly due to its sub-optimal image quality from limited angular sampling of conebeam projections.In this study,we summarized the recent developments of 4D-CBCT reconstruction techniques for image quality improvement,and introduced our developments of a new 4D-CBCT reconstruction technique which features simultaneous motion estimation and image reconstruction(SMEIR).Based on the original SMEIR scheme,biomechanical modeling-guided SMEIR(SMEIR-Bio)was introduced to further improve the reconstruction accuracy of fine details in lung 4D-CBCTs.To improve the efficiency of reconstruction,we recently developed a U-net-based deformation-vector-field(DVF)optimization technique to leverage a population-based deep learning scheme to improve the accuracy of intra-lung DVFs(SMEIR-Unet),without explicit biomechanical modeling.Details of each of the SMEIR,SMEIR-Bio and SMEIR-Unet techniques were included in this study,along with the corresponding results comparing the reconstruction accuracy in terms of CBCT images and the DVFs.We also discussed the application prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy,and presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.
文摘The biomechanical behavior of dog's duodenum and jejunum were studied and a formulation of the stress strain relation is presented in this paper. The results obtained indicated that the exponential coefficient α and the incremental duodenum of the elastic modulus are both larger than those of the jejunum. It means that the duodenum is more deformable than the jejunum. The experimental results of this work provide basal data for kinematics study of a robotic endoscope.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072252 and 12122210)the Natural Science Basic Research Plan in Shanxi Province of China(Grant No.2019JC-02).
文摘Epithelial monolayers act as a vital player in a variety of physiological activities,such as wound healing and embryonic development.The mechanical behavior of epithelial monolayers has been increasingly studied with the recent rapid development of techniques.Under dynamic loadings,the creep response of epithelial monolayers shows a power-law dependence on the time with an exponent larger than that of a single cell.Under static loadings,the elastic modulus of epithelial monolayers is nearly two orders of magnitude higher than that of a single cell.To date,there is a lack of a mechanical model that can describe both the dynamic and static mechanical responses of epithelial monolayers.Here,based on the structural features of cells,we establish a multi-scale structural model of cell monolayers.It is found that the proposed model can naturally capture the dynamic and static mechanical properties of cell monolayers.Further,we explore the effects of the cytoskeleton and the membrane moduli on the dynamical power-law rheological responses and static stress-strain relations of a single cell and cell monolayers,respectively.Our work lays the foundation for subsequent studies of the mechanical behavior of more complex epithelial tissues.
基金the Innovation Foundation of Shanghai Jiaotong University
文摘A 3D nonlinear anisotropic composite biomechanical modeling of human skin was developed according to existing biomechanical experimental results,which can provide insights into the important structure-function relationship and parameters in skin tissue.A structural approach determines the macroscopic mechanical response of the skin tissue from its underlying structural components.The collagen fibers were embedded into a block of elastic gel matrix.The constitutive matrix of skin tissue consisted of both of collagen fiber and elastic gel block according to the rule that the collagen fibers were undulated with the ability to resist load only when completely straightened.The nonlinear and anisotropic mechanical responses were largely due to varying degree of fiber undulation.Statistical distributions were used to determine the extent of fiber undulation.The comparison of stress-strain plots between the modeling and experimental results showed the good coordination of the both.Some model parameters were discussed to compute the macroscopic mechanical response when the tissue block was subject to a simple deformation mode.
基金Project partially supported by the VI FP and VII FP of the European Commission through MAESTRO and ENVISIONprojects (Nos. IP CE503564 and SP CE241851)Spanish Junta de Comunidades de Castilla–La Mancha (Nos. PBC06-0019 and PI-2006/01.1)
文摘This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.
基金The study was financially supported by the state budget of the Slovenian Research Agency under grant P2-0095.
文摘Broadly accepted is that most knee injuries result from increased vertical forces,usually induced by an incidental ski fall,collision,or a high jump.We present a new non-contact knee injury mechanism that can happen during a ski turn.Such an injury is governed by a sudden inward turn of the inner ski and consequent swing of the inner leg followed by a nearly instant stop when locked by hip and knee joints.The model provides predictive results for a lateral tibial plateau compression fracture because several simplifications have been made.We confirmed that the modelled compression stresses at typical skiing conditions and with typical skiing equipment can provoke serious knee injuries.The awareness of skiers and skiing equipment industry of the described knee injury mechanism can act as an important injury-prevention factor.
基金supported by the Academic Discipline Project(No.S30602)the Shanghai Science Foundation of China(No.08ZR1409300)
文摘This paper presents a novel method for assisting surgeons in automatically computing an optimal surgical plan by directly specifying the desired correction to a facial outline. First, the desired facial appearance is designed using a 3D sculpturing tool, while the cut regions of the skull are defined based on facial anatomy. Then, the deformation of the face meshes is performed using an improved biomechanical model in which virtual external forces are driven by the displacements corresponding to the differences of node coordinates between the original and specified face meshes, and free nodes and fixed nodes are defined in terms of the contact surfaces between the soft tissues and the bones within the cut regions. Finally, the shape of the contact surfaces is updated following the deformation of the soft tissues. After registering the deformable contact surfaces and the cut surfaces, the final positions of the cut bones are estimated. Evaluation of preliminary experimental results quantitatively shows the effectiveness of the proposed approach.