Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and ...We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.展开更多
Using the synchronous coordinates,the creation of a Schwarzschild black hole immersed in a de Sitter spacetime can be viewed as a coherent creation of a collection of timelike geodesics.The previously supposed conical...Using the synchronous coordinates,the creation of a Schwarzschild black hole immersed in a de Sitter spacetime can be viewed as a coherent creation of a collection of timelike geodesics.The previously supposed conical singularities do not exist at the horizons of the constrained instanton.Instead,the unavoidable irregularity is presented as a nonvanishing second fundamental form elsewhere at the quantum transition 3-surface.The same arguments can be applied to charged,topological,or higher dimensional black hole cases.展开更多
We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Wi...We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Within the Insight-HXMT data set,compared to the previous work,we identify a more prolonged presence of typeC quasi-periodic oscillations(QPOs)with centroid frequencies ranging from~0.16 to 6.3 Hz,which present correlations with the hardness ratio and the photon index of the Comptonized component.For QPO frequencies less than~2 Hz,the QPO phase lags are hard(photons of 10–19 keV arrive later than those of 1–4 keV),while at higher frequencies,the lags become soft at and above~4 Hz.Furthermore,the spectra in all Insight-HXMT observations consist of a multi-color blackbody component and a Comptonized component,as commonly observed in classical black hole X-ray binaries.We analyze state transitions and the evolution of accretion geometry in this work.The fitted inner disk radius increases abnormally during the low hard state,hypothesized to result from the corona condensing onto the inner disk.Additionally,two significant drops in flux are observed during the soft intermediate state,maybe implying changes in the corona/jet and the disk,respectively.展开更多
We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),a...We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.展开更多
By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnet...By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.展开更多
Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,c...Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.展开更多
In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null h...In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers,we find that how the charges were distributed in the primordial black hole population is well described by a double powerlaw function with typical charge value of law function with typical charge value of q_(c)/10^(-5)=1.60_(-0.28)^(+0.28),where the power-law index α_(1)=2.33_(-0.18)^(+0.15) for q<q_(c) and α_(2)=4.56_(-0.26)^(+0.30)for q≥q_(c).Here,q represents the charge of the black hole in units of√GM,where M is the mass of the black hole.Furthermore,we infer the local event rate of the bursts is 8.8_(-2.1)^(+5.7)×10^(4)Gpc^(-3) yr^(-1),which indicates that an abundance of the primordial black hole population f■10^(-4) is needed to account for the observed FRBs by CHIME.The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.展开更多
We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics w...We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics with a fixed antide Sitter radius and a variable Newton constant.The conjugate variables,central charge C and the chemical potential m,are introduced as a new pair of thermodynamic variables.We find that the iso-e-charge T-S curve becomes non-monotonic when Q<Q_(c).Correspondingly,the F-T curve exhibits a swallow tail structure.This behavior is considered as a van der Waals-like phase transition.As the value of b related to the energy density of Kiselev’s fluid becomes larger,the critical temperature T_(c)will decrease.Thus,the van derWaals-like phase transition will occur at lower temperature.There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage T-S process.There exist a maximum and a Hawking-Page phase transition points in theμ-C plane.As the value of b related to Kiselev’s fluid becomes larger,the Hawking-Page phase transition will occur at lower temperature in the isovoltageμ-T process.For other values of the state parameterω,there also exists van der Waals-like phase transition.展开更多
We study the capture cross-section of charged particles by a weakly charged Schwarzschild black hole.The dependence of the maximum impact parameter for capture on the particle’s energy is investigated numerically for...We study the capture cross-section of charged particles by a weakly charged Schwarzschild black hole.The dependence of the maximum impact parameter for capture on the particle’s energy is investigated numerically for different values of the electromagnetic coupling strength between the particle and the black hole.The capture cross-section is then calculated.We show that the capture cross-section is independent of the electromagnetic coupling for ultra-relativistic particles.The astrophysical implications of our results are discussed.展开更多
The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with...The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.展开更多
It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order ...It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.展开更多
The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift o...The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift observations from the James Webb Space Telescope reveal that distant galaxies and their central black holes formed shortly after the Big Bang. An innovation about the speed of light explains how supermassive black holes could have formed primordially. Predictions of Hawking radiation include the possibility of black holes contributing to the energy of stars such as the Sun. Black holes have also been suggested as a source of radiation and magnetic fields in giant planets. Observations of Enceladus raise the possibility that this moon and other objects near Saturn’s Rings contain small singularities. Extrapolations of this methodology indicate that black holes could exist within solar system bodies including planets. Extended discussion describes how their presence could explain mysteries of internal heat, planetary magnetic fields, and processes of solar system formation.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a ve...The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.展开更多
Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of Europ...Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.展开更多
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No.LY14A030001)。
文摘We calculate the thermodynamic quantities in the quantum corrected Reissner-Nordstr?m-AdS(RN-AdS)black hole,and examine their quantum corrections.By analyzing the mass and heat capacity,we give the critical state and the remnant state,respectively,and discuss their consistency.Then,we investigate the quantum tunneling from the event horizon of massless scalar particle by using the null geodesic method,and charged massive boson W^(±)and fermions by using the Hamilton-Jacob method.It is shown that the same Hawking temperature can be obtained from these tunneling processes of different particles and methods.Next,by using the generalized uncertainty principle(GUP),we study the quantum corrections to the tunneling and the temperature.Then the logarithmic correction to the black hole entropy is obtained.
文摘Using the synchronous coordinates,the creation of a Schwarzschild black hole immersed in a de Sitter spacetime can be viewed as a coherent creation of a collection of timelike geodesics.The previously supposed conical singularities do not exist at the horizons of the constrained instanton.Instead,the unavoidable irregularity is presented as a nonvanishing second fundamental form elsewhere at the quantum transition 3-surface.The same arguments can be applied to charged,topological,or higher dimensional black hole cases.
基金supported by the National Key R&D Program of China(2021YFA0718500)the National Natural Science Foundation of China(NSFC,Grant No.12133007)partially supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020)。
文摘We present a comprehensive analysis of the 2021 outburst of MAXI J1803–298 utilizing observations of the Insight-Hard X-ray Modulation Telescope(Insight-HXMT)spanning from the low hard state to the high soft state.Within the Insight-HXMT data set,compared to the previous work,we identify a more prolonged presence of typeC quasi-periodic oscillations(QPOs)with centroid frequencies ranging from~0.16 to 6.3 Hz,which present correlations with the hardness ratio and the photon index of the Comptonized component.For QPO frequencies less than~2 Hz,the QPO phase lags are hard(photons of 10–19 keV arrive later than those of 1–4 keV),while at higher frequencies,the lags become soft at and above~4 Hz.Furthermore,the spectra in all Insight-HXMT observations consist of a multi-color blackbody component and a Comptonized component,as commonly observed in classical black hole X-ray binaries.We analyze state transitions and the evolution of accretion geometry in this work.The fitted inner disk radius increases abnormally during the low hard state,hypothesized to result from the corona condensing onto the inner disk.Additionally,two significant drops in flux are observed during the soft intermediate state,maybe implying changes in the corona/jet and the disk,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No.11903025)the starting fund of China West Normal University (Grant No.18Q062)+2 种基金the Sichuan Youth Science and Technology Innovation Research Team (Grant No.21CXTD0038)the Chongqing Science and Technology Bureau (Grant No.cstc2022ycjh-bgzxm0161)the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1833)。
文摘We examine thermodynamic phase transition(PT)of the charged Gauss-Bonnet Ad S black hole(BH)by utilizing the shadow radius.In this system,we rescale the corresponding Gauss-Bonnet coefficientαby a factor of 1/(D-4),and ensure thatαis positive to avoid any singularity problems.The equation derived for the shadow radius indicates that it increases as the event horizon radius increases,making it an independent variable for determining BH temperature.By investigating the PT curve in relation to shadows,we can observe that the shadow radius can be used as an alternative to the event horizon radius in explaining the phenomenon of BH PT.Furthermore,the results indicate that an increase in the parameterαcorresponds to a decrease in the temperature of the BH.By utilizing the relationship between the temperature and the shadow radius,it is possible to obtain the thermal profile of the Gauss-Bonnet AdS BH.It is evident that there is an N-type variation in temperature for pressures P<P_(c).Additionally,as the parameterαincreases,the region covered by shadow expands while the temperature decreases.The utilization of BH shadows as a probe holds immense significance in gaining a deeper understanding of BH thermodynamic behavior.
基金supported by the National Natural Science Foundation of China (Grant No. 11903025)the Starting Fund of China West Normal University (Grant No. 18Q062)+2 种基金the Sichuan Science and Technology Program (Grant No. 2023ZYD0023)the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038)the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833)。
文摘By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.12075246)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities(grant No.E2EG6602X2 and grant No.E2ET0209X2)supported in part by the Natural Science Foundation of Henan Province and Zhengzhou University(grant Nos.242300420231,JC23149007,35220136)the China Postdoctoral Science Foundation(grant No.2021M692942)the NSFC(grant No.11905224)the NSFC(grant No,12147103)supported by the scientific research starting grants from University of Chinese Academy of Sciences(grant No.118900M061)。
文摘Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.12203013)the Guangxi Science Foundation(grant Nos.2023GXNSFBA026030and Guike AD22035171)。
文摘In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers,we find that how the charges were distributed in the primordial black hole population is well described by a double powerlaw function with typical charge value of law function with typical charge value of q_(c)/10^(-5)=1.60_(-0.28)^(+0.28),where the power-law index α_(1)=2.33_(-0.18)^(+0.15) for q<q_(c) and α_(2)=4.56_(-0.26)^(+0.30)for q≥q_(c).Here,q represents the charge of the black hole in units of√GM,where M is the mass of the black hole.Furthermore,we infer the local event rate of the bursts is 8.8_(-2.1)^(+5.7)×10^(4)Gpc^(-3) yr^(-1),which indicates that an abundance of the primordial black hole population f■10^(-4) is needed to account for the observed FRBs by CHIME.The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.
基金supported by the National Natural Science Foundation of China(Grant Nos.12373022 and U1731107).
文摘We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics with a fixed antide Sitter radius and a variable Newton constant.The conjugate variables,central charge C and the chemical potential m,are introduced as a new pair of thermodynamic variables.We find that the iso-e-charge T-S curve becomes non-monotonic when Q<Q_(c).Correspondingly,the F-T curve exhibits a swallow tail structure.This behavior is considered as a van der Waals-like phase transition.As the value of b related to the energy density of Kiselev’s fluid becomes larger,the critical temperature T_(c)will decrease.Thus,the van derWaals-like phase transition will occur at lower temperature.There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage T-S process.There exist a maximum and a Hawking-Page phase transition points in theμ-C plane.As the value of b related to Kiselev’s fluid becomes larger,the Hawking-Page phase transition will occur at lower temperature in the isovoltageμ-T process.For other values of the state parameterω,there also exists van der Waals-like phase transition.
文摘We study the capture cross-section of charged particles by a weakly charged Schwarzschild black hole.The dependence of the maximum impact parameter for capture on the particle’s energy is investigated numerically for different values of the electromagnetic coupling strength between the particle and the black hole.The capture cross-section is then calculated.We show that the capture cross-section is independent of the electromagnetic coupling for ultra-relativistic particles.The astrophysical implications of our results are discussed.
文摘The Newton’s theory of universal gravitation is generalized. Significantly strong at short distances central interaction of bodies and particles is established in comparison with Newtonian. A connection is found with Black Holes, with the horizon of events. Possibility of systematization of all Black Holes is shown. An illustration is given on the example of Black Hole S<sub>gr</sub>A*.
文摘It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.
文摘The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift observations from the James Webb Space Telescope reveal that distant galaxies and their central black holes formed shortly after the Big Bang. An innovation about the speed of light explains how supermassive black holes could have formed primordially. Predictions of Hawking radiation include the possibility of black holes contributing to the energy of stars such as the Sun. Black holes have also been suggested as a source of radiation and magnetic fields in giant planets. Observations of Enceladus raise the possibility that this moon and other objects near Saturn’s Rings contain small singularities. Extrapolations of this methodology indicate that black holes could exist within solar system bodies including planets. Extended discussion describes how their presence could explain mysteries of internal heat, planetary magnetic fields, and processes of solar system formation.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
文摘The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.
文摘Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.