Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and ...Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.展开更多
Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By...Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.展开更多
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal...Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
文摘Systematic analysis of influence of blasting vibration on bridges,tunnels,slopes and the mechanical relationships between each other were drawn based on the example of safety argument between blasting mining area and protected objects.The safety argument methods and technological means of controlling dangerous and harmful factors were proposed by the application of principle of risk analysis.And standard control system was established based on controlling the blasting parameters of division of blasting area.
文摘Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.
文摘Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.