期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Optimization of design parameters for controlled rocking steel braced dual-frames
1
作者 Sobhan Ghasemi M.Firoozi Nezamabadi +1 位作者 Abdolreza S.Moghadam Mahmood Hosseini 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期1053-1068,共16页
A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensi... A controlled rocking concentrically steel braced frame(CR-CSBF)is introduced as an alternative to conventional methods to prevent major structural damage during large earthquakes.It is equipped with elastic post-tensioned(PT)cables and replaceable devices or fuses to provide overturning resistance and dissipate energy,respectively.Although CR-CSBFs are not officially legalized in globally valid codes for new buildings,it is expected to be presented in them in the near future.The main goal of this study is to determine the optimal design parameters consist of the yield strength and modulus of elasticity of the fuse,the initial force of the PT cable,and the gravity load on the rocking column,considering different heights of the frame,spanning ratios and ground motion types for dual-configuration CR-CSBF.Nonlinear time-history analyses are performed in OpenSees.This study aims to define the optimal input variables as effective design parameters of CR-CSBFs by comparing four seismic responses consisting of story drift,roof displacement,roof acceleration and base shear,and also using the Euclidean metric optimization method.Despite the previous research,this study is innovative and first of its kind.The results demonstrate that the optimal design parameters are variable for various conditions. 展开更多
关键词 self-centering rocking steel braced frame design parameters OPTIMIZATION low damage
下载PDF
Topology optimization and seismic collapse assessment of shape memory alloy(SMA)-braced frames:Effectiveness of Fe-based SMAs
2
作者 Aydin HASSANZADEH Saber MORADI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第3期281-301,共21页
This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a perform... This paper presents a seismic topology optimization study of steel braced frames with shape memory alloy(SMA)braces.Optimal SMA-braced frames(SMA-BFs)with either Fe-based SMA or NiTi braces are determined in a performance-based seismic design context.The topology optimization is performed on 5-and 10-story SMA-BFs considering the placement,length,and cross-sectional area of SMA bracing members.Geometric,strength,and performance-based design constraints are considered in the optimization.The seismic response and collapse safety of topologically optimal SMA-BFs are assessed according to the FEMA P695 methodology.A comparative study on the optimal SMA-BFs is also presented in terms of total relative cost,collapse capacity,and peak and residual story drift.The results demonstrate that Fe-based SMA-BFs exhibit higher collapse capacity and more uniform distribution of lateral displacement over the frame height while being more cost-effective than NiTi braced frames.In addition to a lower unit price compared to NiTi,Fe-based SMAs reduce SMA material usage.In frames with Fe-based SMA braces,the SMA usage is reduced by up to 80%.The results highlight the need for using SMAs with larger recoverable strains. 展开更多
关键词 topology optimization shape memory alloy Fe-based SMA steel braced frames performance-based seismic design collapse assessment
原文传递
Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault ground motions
3
作者 Zhi-Peng CHEN Songye ZHU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第8期962-975,共14页
In this paper,the seismic responses and resilience of a novel K-type superelastic shape memory alloy(SMA)self-centring(SC)eccentrically braced frame(EBF)are investigated.The simulation models of the SMA-based SC-EBF a... In this paper,the seismic responses and resilience of a novel K-type superelastic shape memory alloy(SMA)self-centring(SC)eccentrically braced frame(EBF)are investigated.The simulation models of the SMA-based SC-EBF and a corresponding equal-stiffness traditional EBF counterpart are first established based on some existing tests.Then twenty-four near-fault ground motions are used to examine the seismic responses of both EBFs under design basis earthquake(DBE)and maximum considered earthquake(MCE)levels.Structural fragility and loss analyses are subsequently conducted through incremental dynamic analyses(IDA),and the resilience of the two EBFs are eventually estimated.The resilience assessment basically follows the framework proposed by Federal Emergency and Management Agency(FEMA)with the additional consideration of the maximum residual inter-storey drift ratio(MRIDR).The novel SMA-based SC-EBF shows a much better resilience in the study and represents a promising attractive alternative for future applications. 展开更多
关键词 shape memory alloy eccentrically braced frame self-centring FRAGILITY loss function RESILIENCE
原文传递
Cyclic responses of three 2-story seismic concentrically braced frames
4
作者 Ching-Yi TSAI Keh-Chyuan TSAI +4 位作者 Chih-Han LIN Chih-Yu WEI Kung-Juin WANG Yi-Jer YU An-Chien WU 《Frontiers of Structural and Civil Engineering》 SCIE EI 2010年第3期287-301,共15页
Three full scale two-story steel concentrically braced frames(CBFs)were tested at the National Center for Research on Earthquake Engineering(NCREE)in Taipei.The specimen is a single bay with the braces arranged in a t... Three full scale two-story steel concentrically braced frames(CBFs)were tested at the National Center for Research on Earthquake Engineering(NCREE)in Taipei.The specimen is a single bay with the braces arranged in a two-story X-brace configuration.The main differences among the three tests are the brace types(hollow structural or wide-flange section)and the design criteria adopted for the gusset plate connections.Results of these three tests confirm that the two-story X-shape steel CBFs all have rather good energy dissipation characteristics up to a story drift of about 0.03 radians under the cyclically increasing lateral displacements.Severe brace local buckling and out-of-plane displacements were observed during each test.Tests confirm that both the 2tlinear and 8t-elliptical designs of the gusset plate connection provide satisfactory ductility for the steel CBF.Hollow structural section(HSS)braces fractured at a story drift smaller than that found using wide flange sections.The nonlinear fine element method(FEM)program ABAQUS was used to simulate the responses of the specimen.The base shear versus the story drift relationships obtained from the tests and the FEM analytical results are quite agreeable in various levels of lateral frame displacement.The analytical results confirm that the severe out-of-plane buckling of the braces can be accurately simulated.FEM analyses also illustrate that the steel moment resisting frame takes about 40%story shear when the inter-story drift is greater than 0.02 radians. 展开更多
关键词 concentrically braced frame(CBF) FULL-SCALE
原文传递
Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings
5
作者 Iman TABAEYE IZADI Abdolrasoul RANJBARAN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第4期421-430,共10页
This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive coll... This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive collapse of RC buildings.It was proposed to transfer the residual loads upwards above the failed column of RC buildings by vertical cables hanged at the top to a hat steel braced frame seated on top of the building which in turn redistributes the residual loads to the adjacent columns.In this study a ten-storey regular structural building has been considered to investigate progressive collapse potential.Structural design is based on ACI 318-08 concrete building code for special RC frames and the nonlinear dynamic analysis is carried out using SAP2000 software,following UFC4-023-03 document.Nine independent failure scenarios are adopted in the investigation,including six external removal cases in different floors and three removal cases in the first floor.A new detail is proposed by using barrel and wedge to improve residual forces transfer to the cables after removal of the columns.Simulation results show that progressive collapse of building that resulted from potential failure of columns located in floors can be efficiently resisted by using this method. 展开更多
关键词 prevent progressive collapse alternate load path reinforced concrete buildings nonlinear dynamic retrofitting cable steel hat braced frame barrel and wedge
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部