D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good f...D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good features, their features are very complicated. Optic fiber sensors can be multi braided into 3 D braided composites to fulfill a new kind of 3 D smart composites to monitor RTM process, study mechanical behaviors and damage states after molding, and monitor its own condition during service life. Since optic performances of optic fibers have direct and important relation to the performances of optic fiber sensors, experimental research is done to devise a method to incorporate the optic fiber into a 3 D structure. The optical performances of the braided optic fibers are tested and compared with the original one to study the optic performances of optic fibers, before their being braided into composites and after the RTM process.展开更多
It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On th...It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.展开更多
The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. ...The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defined two phases, namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the four-directional braiding structure.展开更多
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional ...Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional tension by using the nonlinear finite element method.Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix.The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D1×1braided composites.Murakami′s damage tensor is adopted to characterize each damage mode.In the simulation process,the damage mechanisms are revealed and the tensile strength of 2D1×1braided composites is predicted from the calculated average stress-average strain curve.Numerical results show good agreement with experimental data,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites.展开更多
A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided compos...A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First, the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites, to validate the ability of the optic fiber to survive the manufacturing process. On the other hand, the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain. Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.展开更多
Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistica...Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided compos- ites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.展开更多
Electrical-mechanical coupling behaviors and thermal-resistance effects of 3D braided composites under external loads are important for structural health monitoring(SHM). Electrical conductivity and electrical-mechani...Electrical-mechanical coupling behaviors and thermal-resistance effects of 3D braided composites under external loads are important for structural health monitoring(SHM). Electrical conductivity and electrical-mechanical coupling behaviors of 3D braided carbon fiber/epoxy composites under uniaxial tension were reported. It was found that the transverse resistance decreased and the axial resistance increased with the increasing braiding angle. The fractional change in resistance increased linearly as the strain was below 1.0%, and the nonlinearity appeared when the strain exceeded 1.0%. The negative temperature coefficient(NTC) effect was observed before the glass transition temperature Tg of epoxy resin, while there was a positive temperature coefficient(PTC) effect after Tg.展开更多
The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained t...The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.展开更多
Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of a...Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.展开更多
Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring wit...Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.展开更多
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro...Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.展开更多
Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composite...Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.展开更多
In order to study the failure patterns and strength of 3D braided composites from the microscopic view, the damage propagation under tensile loading steps in three kinds of unit cells is simulated. The homogenization ...In order to study the failure patterns and strength of 3D braided composites from the microscopic view, the damage propagation under tensile loading steps in three kinds of unit cells is simulated. The homogenization formula of micro-stress and the solving approach of finite element method are given firstly. A criterion is presented to determine the damage and its pattern of each element, and then the stiffness degradation method based on Murakami's geometric damage theory is used to simulate the status of damage under tensile loading steps for three kinds of unit cells. It can be seen that the damage percentage and damage pattern of damaged unit cell are totally different for different kind of unit cells. More damaged elements are observed for face cell and corner cell than that for body cell. It is also observed that the damage firstly occurs at the area of face cell, which agrees well with experimental results. It is verified that considering the effects of face and corner cells are important for the damage and strength analysis of 3D braided composites.展开更多
In this paper,a surrogate-based modeling methodology is developed and presented to predict the elastic properties of three dimensional(3 D)four-directional braided composites.Using this approach,the prediction process...In this paper,a surrogate-based modeling methodology is developed and presented to predict the elastic properties of three dimensional(3 D)four-directional braided composites.Using this approach,the prediction process becomes feasible with only a limited number of training points.The surrogate models constructed using Finite Element(FE)method and Diffuse Approximation,reduce the computational time and cost for preparing experimental samples.In the FE model,multiscale method is applied to couple the computations of elastic properties at microscale and mesoscale.Subsequently,a parametric study is performed to analyze the effects of the three design parameters on the elastic properties.Satisfactory results are obtained via the surrogatebased modeling predictions,which are compared with the experimental measurements.Moreover,the predictions obtained from surrogate models concur well with the FE predictions.This study orients a new direction for predicting the mechanical properties based on surrogate models which can effectively reduce the sample preparation cost and computational efforts.展开更多
To effectively get the thermal expansion coef- ficient (CTE) of three-dimensional (3D) braided C/C composites and study the variations, a VC++ program with graphical user interfaces was obtained, based on the ya...To effectively get the thermal expansion coef- ficient (CTE) of three-dimensional (3D) braided C/C composites and study the variations, a VC++ program with graphical user interfaces was obtained, based on the yam unit model and numerical analysis. With the limited basic properties of carbon fibers and carbon matrix, CTE of 3D braided C/C composites is obtained at 85 ~C. The deviation between the simulated and exl^erimental axial CTE of 3D braided C/C composites is no more than 11%. The effects of different parameters (including the braiding angle of 3D braided preform, the fiber volume fraction and the porosity of 3D braided C/C composites, and the elastic modulus, Poisson's ratio and CTEs of carbon fibers and carbon matrix) were analyzed with the program. The results show that the axial CTE of C/C composites decreases with the increase of the braiding angle, the fiber volume fraction, and the porosity of 3D braided C/C composites. The transverse elastic modulus of carbon fibers has the greatest effect on the axial CTE among the studied mechanical parameters, followed by the elastic modulus and Poisson's ratio of carbon matrix.展开更多
In this paper,a novel mixed wavelet-learning method is developed for predicting macroscopic effective heat transfer conductivities of braided composite materials with heterogeneous thermal conductivity.This innovative...In this paper,a novel mixed wavelet-learning method is developed for predicting macroscopic effective heat transfer conductivities of braided composite materials with heterogeneous thermal conductivity.This innovative methodology integrates respective superiorities of multi-scale modeling,wavelet transform and neural networks together.By the aid of asymptotic homogenization method(AHM),off-line multi-scalemodeling is accomplished for establishing thematerial databasewith highdimensional and highly-complexmappings.Themulti-scalematerial database and the wavelet-learning strategy ease the on-line training of neural networks,and enable us to efficiently build relatively simple networks that have an essentially increasing capacity and resisting noise for approximating the high-complexity mappings.Moreover,it should be emphasized that the wavelet-learning strategy can not only extract essential data characteristics from the material database,but also achieve a tremendous reduction in input data of neural networks.The numerical experiments performed using multiple 3D braided composite models verify the excellent performance of the presentedmixed approach.The numerical results demonstrate that themixedwaveletlearningmethodology is a robustmethod for computing themacroscopic effective heat transfer conductivities with distinct heterogeneity patterns.The presentedmethod can enormously decrease the computational time,and can be further expanded into estimating macroscopic effective mechanical properties of braided composites.展开更多
Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
文摘D braiding technology has stimulated a great deal of interest in the world at large and been widely used in aerospace, military, civil construction and medical fields. Although 3 D braided composites have many good features, their features are very complicated. Optic fiber sensors can be multi braided into 3 D braided composites to fulfill a new kind of 3 D smart composites to monitor RTM process, study mechanical behaviors and damage states after molding, and monitor its own condition during service life. Since optic performances of optic fibers have direct and important relation to the performances of optic fiber sensors, experimental research is done to devise a method to incorporate the optic fiber into a 3 D structure. The optical performances of the braided optic fibers are tested and compared with the original one to study the optic performances of optic fibers, before their being braided into composites and after the RTM process.
基金Aeronautical Science Foundation of China (04B51045)
文摘It is vital to choose a factual and reasonable micro-structural model of braided composites for improving the calculating precision of thermal property of 3-D braided composites by finite element method (FEM). On the basis of new microstructure model of braided composites proposed recently, the model of FEM calculation for thermal conductivity of 3-dimennsional and 4-directional braided composites is set up in this paper. The curves of coefficient of effective thermal conductivity versus fiber volume ratio and interior braiding angle are obtained. Furthermore, comparing the results of FEM with the available experimental data, the reasonability and veracity of calculation are confirmed at the same time.
文摘The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defined two phases, namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the four-directional braiding structure.
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金Supported by the National Natural Science Foundation of China(10672075)
文摘Coupling with the periodical displacement boundary condition,a representative volume element(RVE) model is established to simulate the progressive damage behavior of 2D1×1 braided composites under unidirectional tension by using the nonlinear finite element method.Tsai-Wu failure criterion with various damage modes and Mises criterion are considered for predicting damage initiation and progression of yarns and matrix.The anisotropic damage model for yarns and the isotropic damage model for matrix are used to simulate the microscopic damage propagation of 2D1×1braided composites.Murakami′s damage tensor is adopted to characterize each damage mode.In the simulation process,the damage mechanisms are revealed and the tensile strength of 2D1×1braided composites is predicted from the calculated average stress-average strain curve.Numerical results show good agreement with experimental data,thus the proposed simulation method is verified for damage mechanism analysis of 2D braided composites.
基金Project supported by the Aeronautic Science Foundation of China (No. 01G52075) the Outstanding Youth Foun-dation of Jiangsu Province (No. BK2002416).
文摘A reliable understanding of the properties of 3-D braided composites is of primary importance for proper utilization of these materials. A new method is introduced to study the mechanical performance of braided composite materials using embedded optic fiber sensors. Experimental research is performed to devise a method of incorporating optic fibers into a 3-D braided composite structure. The efficacy of this new testing method is evaluated on two counts. First, the optical performance of optic fibers is studied before and after incorporated into 3-D braided composites, as well as after completion of the manufacturing process for 3-D braided composites, to validate the ability of the optic fiber to survive the manufacturing process. On the other hand, the influence of incorporated optic fiber on the original braided composite is also researched by tension and compression experiments. Second, two kinds of optic fiber sensors are co-embedded into 3-D braided composites to evaluate their respective ability to measure the internal strain. Experimental results show that multiple optic fiber sensors can be co-braided into 3-D braided composites to determine their internal strain which is difficult to be fulfilled by other current existing methods.
基金Supported by the National Natural Science Foundation of China(51075031)
文摘Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided compos- ites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.
基金National Natural Science Foundation of China(No.51875099)。
文摘Electrical-mechanical coupling behaviors and thermal-resistance effects of 3D braided composites under external loads are important for structural health monitoring(SHM). Electrical conductivity and electrical-mechanical coupling behaviors of 3D braided carbon fiber/epoxy composites under uniaxial tension were reported. It was found that the transverse resistance decreased and the axial resistance increased with the increasing braiding angle. The fractional change in resistance increased linearly as the strain was below 1.0%, and the nonlinearity appeared when the strain exceeded 1.0%. The negative temperature coefficient(NTC) effect was observed before the glass transition temperature Tg of epoxy resin, while there was a positive temperature coefficient(PTC) effect after Tg.
文摘The effects of microstructure on quasi-static transverse loading behavior of 3D circular braided composite tubes were studied. Transverse loading tests were conducted. Transverse load-deflection curves were obtained to analyze the effects of braiding parameters including the braiding angle, the wall thickness, and the diameter on the transverse loading of 3D circular braided composite tubes. Breaking loads, moduli and strengths had also been used to describe the transverse loading behaviors. The failure morphologies were shown to reveal damage mechanisms. From the results, the increase in braiding angle, wall thickness and diameter increases the ability of anti-deformation and breaking load of braided tubes. The breaking load of specimen with a braiding angle of 45° is about 1.68 times that of specimen with a braiding angle of 15°. The breaking load of specimen with 4 layers of yarns is about 2.15 times that of specimen with 2 layers of yarns. The breaking load of the tube with a diameter of 25.5 mm is about 2.39 times that of the tube with a diameter of 20.5 mm.
基金National Natural Science Foundation of China(No.51303131)
文摘Textile-reinforced composites,due to their excellent highstrength-to-low-mass ratio, provide promising alternatives to conventional structural materials in many high-tech sectors. 3D braided composites are a kind of advanced composites reinforced with 3D braided fabrics; the complex nature of 3D braided composites makes the evaluation of the quality of the product very difficult. In this investigation,a defect recognition platform for 3D braided composites evaluation was constructed based on dual-tree complex wavelet packet transform( DT-CWPT) and backpropagation( BP) neural networks. The defects in 3D braided composite materials were probed and detected by an ultrasonic sensing system. DT-CWPT method was used to analyze the ultrasonic scanning pulse signals,and the feature vectors of these signals were extracted into the BP neural networks as samples. The type of defects was identified and recognized with the characteristic ultrasonic wave spectra. The position of defects for the test samples can be determined at the same time. This method would have great potential to evaluate the quality of 3D braided composites.
基金Tianjin Natural Science Sustentation Fund Project,China(No.043600711)Ministry of Education Sustentation Fund Project,China(No.03008)
文摘Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_165)+2 种基金the Fundamental Research Funds for the Central Universities,Aeronautical Science Foundation of China(No.2012ZB52026)Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
文摘Three-dimensional(3 D)braided composites are a kind of advanced ones and are used in the aeronautical and astronautical fields more widely. The advantages, usages, shortages and disadvantages of 3D braided composites are analyzed, and the possible approach of improving the properties of the materials is presented, that is, a new type of 3D full 5-directional braided composites is developed. The methods of making this type of preform are proposed. It is pointed out that the four-step braiding which is the most possible to realize industrialized production almost has no effect on the composites' properties. By analyzing the simulation model,the advantages of the material compared with the 3D 4-directional and 5-directional materials are presented. Finally, a microstructural model is analyzed to lay the foundation for the future theoretical analysis of these composites.
基金National Natural Science Foundation of China (10772115)
文摘In order to study the failure patterns and strength of 3D braided composites from the microscopic view, the damage propagation under tensile loading steps in three kinds of unit cells is simulated. The homogenization formula of micro-stress and the solving approach of finite element method are given firstly. A criterion is presented to determine the damage and its pattern of each element, and then the stiffness degradation method based on Murakami's geometric damage theory is used to simulate the status of damage under tensile loading steps for three kinds of unit cells. It can be seen that the damage percentage and damage pattern of damaged unit cell are totally different for different kind of unit cells. More damaged elements are observed for face cell and corner cell than that for body cell. It is also observed that the damage firstly occurs at the area of face cell, which agrees well with experimental results. It is verified that considering the effects of face and corner cells are important for the damage and strength analysis of 3D braided composites.
基金financial support from National Natural Science Foundation of China(No.U1833116)the China Postdoctoral Science Foundation Funded Project(No.2018M642775)supported by Key Scientific Research Project of Colleges and Universities in Henan Province(No.20A460003)。
文摘In this paper,a surrogate-based modeling methodology is developed and presented to predict the elastic properties of three dimensional(3 D)four-directional braided composites.Using this approach,the prediction process becomes feasible with only a limited number of training points.The surrogate models constructed using Finite Element(FE)method and Diffuse Approximation,reduce the computational time and cost for preparing experimental samples.In the FE model,multiscale method is applied to couple the computations of elastic properties at microscale and mesoscale.Subsequently,a parametric study is performed to analyze the effects of the three design parameters on the elastic properties.Satisfactory results are obtained via the surrogatebased modeling predictions,which are compared with the experimental measurements.Moreover,the predictions obtained from surrogate models concur well with the FE predictions.This study orients a new direction for predicting the mechanical properties based on surrogate models which can effectively reduce the sample preparation cost and computational efforts.
基金financially supported by the National Natural Science Foundation of China(Nos.50832004 and 50972120)the 111 Project(No.B08040)
文摘To effectively get the thermal expansion coef- ficient (CTE) of three-dimensional (3D) braided C/C composites and study the variations, a VC++ program with graphical user interfaces was obtained, based on the yam unit model and numerical analysis. With the limited basic properties of carbon fibers and carbon matrix, CTE of 3D braided C/C composites is obtained at 85 ~C. The deviation between the simulated and exl^erimental axial CTE of 3D braided C/C composites is no more than 11%. The effects of different parameters (including the braiding angle of 3D braided preform, the fiber volume fraction and the porosity of 3D braided C/C composites, and the elastic modulus, Poisson's ratio and CTEs of carbon fibers and carbon matrix) were analyzed with the program. The results show that the axial CTE of C/C composites decreases with the increase of the braiding angle, the fiber volume fraction, and the porosity of 3D braided C/C composites. The transverse elastic modulus of carbon fibers has the greatest effect on the axial CTE among the studied mechanical parameters, followed by the elastic modulus and Poisson's ratio of carbon matrix.
基金supported by the National Natural Science Foundation of China(No.12001414)the Fundamental Research Funds for the Central Universities(No.JB210702)+4 种基金the open foundation of Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics(Wuhan University of Technology)(No.WUTTAM202104)the China Postdoctoral Science Foundation(No.2018M643573)the Natural Science Basic Research Program of Shaanxi Province(No.2019JQ-048)the National Natural Science Foundation of China(Nos.51739007 and 61971328)supported by the Center for high performance computing of Xidian University.
文摘In this paper,a novel mixed wavelet-learning method is developed for predicting macroscopic effective heat transfer conductivities of braided composite materials with heterogeneous thermal conductivity.This innovative methodology integrates respective superiorities of multi-scale modeling,wavelet transform and neural networks together.By the aid of asymptotic homogenization method(AHM),off-line multi-scalemodeling is accomplished for establishing thematerial databasewith highdimensional and highly-complexmappings.Themulti-scalematerial database and the wavelet-learning strategy ease the on-line training of neural networks,and enable us to efficiently build relatively simple networks that have an essentially increasing capacity and resisting noise for approximating the high-complexity mappings.Moreover,it should be emphasized that the wavelet-learning strategy can not only extract essential data characteristics from the material database,but also achieve a tremendous reduction in input data of neural networks.The numerical experiments performed using multiple 3D braided composite models verify the excellent performance of the presentedmixed approach.The numerical results demonstrate that themixedwaveletlearningmethodology is a robustmethod for computing themacroscopic effective heat transfer conductivities with distinct heterogeneity patterns.The presentedmethod can enormously decrease the computational time,and can be further expanded into estimating macroscopic effective mechanical properties of braided composites.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.