[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), a...[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.展开更多
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s...The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability.展开更多
Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for p...Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for predicting change over time.Surface soil samples from six ecoregions of the United States were analyzed for permanganate oxidizable C(KMnO4-C)and mineralizable C pools.Variations of SOC ranged from 7.9 mg g^-1(Florida site)to 325 mg g^-1(Hawaii site).Mineralisable C pools and KMnO4-C were highest in soils from the Hawaii site.Mean annual precipitation explains SOC and resistant C pool variations.Clay content was related to mineralisable active C pools and bacterial abundance.Mean annual precipitation and clay content are potential variables for predicting changes in SOC pools at large spatial scales.展开更多
Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted ave...Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.展开更多
Background:Natural forests cover approximately 29%of New Zealand’s landmass and represent a large terrestrial carbon pool.In 2002 New Zealand implemented its first representative plot-based natural forest inventory t...Background:Natural forests cover approximately 29%of New Zealand’s landmass and represent a large terrestrial carbon pool.In 2002 New Zealand implemented its first representative plot-based natural forest inventory to assess carbon stocks and stock changes in these mostly undisturbed old-growth forests.Although previous studies have provided estimates of biomass or carbon stocks,these were either not fully representative or lacked data from important pools such as dead wood(coarse woody debris).The current analysis provides the most complete estimates of carbon stocks and stock changes in natural forests in New Zealand.Results:We present estimates of per hectare carbon stocks and stock changes in live and dead organic matter pools excluding soil carbon based on the first two measurement cycles of the New Zealand Natural Forest Inventory carried out from 2002 to 2014.These show that New Zealand’s natural forests are in balance and are neither a carbon source nor a carbon sink.The average total carbon stock was 227.0±14.4 tC·ha^(−1)(95%C.I.)and did not change significantly in the 7.7 years between measurements with the net annual change estimated to be 0.03±0.18 tC·ha^(−1)·yr^(−1).There was a wide variation in carbon stocks between forest groups.Regenerating forest had an averaged carbon stock of only 53.6±9.4 tC·ha^(−1) but had a significant sequestration rate of 0.63±0.25 tC·ha^(−1)·yr^(−1),while tall forest had an average carbon stock of 252.4±15.5 tC·ha^(−1),but its sequestration rate did not differ significantly from zero(−0.06±0.20 tC·ha^(−1)·yr^(−1)).The forest alliance with the largest average carbon stock in above and below ground live and dead organic matter pools was silver beech-red beech-kamahi forest carrying 360.5±34.6 tC·ha^(−1).Dead wood and litter comprised 27%of the total carbon stock.Conclusions:New Zealand’s Natural Forest Inventory provides estimates of carbon stocks including estimates for difficult to measure pools such as dead wood and roots.It also provides estimates of uncertainties including effects of model prediction error and sampling variation between plots.Importantly it shows that on a national level New Zealand’s natural forests are in balance.Nevertheless,this is a nationally important carbon pool that requires continuous monitoring to identify potential negative or positive changes.展开更多
Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is...Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract展开更多
It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertil...It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertilization on the greenhouse gas emissions and soil carbon pool during the growing season of winter Chinese milk vetch in the process of rice cultivation.This study investigated the effects of nitrogen application in late rice season on the yield of the succeeding Chinese milk vetch and greenhouse gas emissions as well as the soil carbon pool characteristics after the winter planting of Chinese milk vetch with the winter idling of no nitrogen application as the control.The results showed that the yield of Chinese milk vetch was the highest under the nitrogen application of 225 kg/hm^2 in the late rice season,reaching up to 18 388.97 kg/hm^2,which was significantly different from other treatments( P <0.05).Nitrogen application in late rice season increased the emissions of N_2 O,CH_4,CO_2 and global warming potential( GWP) in the growing season of Chinese milk vetch.Compared with the winter idling treatment,winter planting of Chinese milk vetch significantly increased the soil organic carbon and soil carbon pool management index.The yield of Chinese milk vetch was significantly positively correlated with N_2O and CH_4 emissions( P < 0.05),while it presented extremely significant positive correlations with CO_2 emissions,GWP,active organic carbon,and carbon pool management index( P < 0.01).Nitrogen application in the late rice season increased the emissions of N_2 O,CH_4,CO_2,and enhanced the greenhouse gas emission potential during the growing season of Chinese milk vetch.Therefore,without reducing the yield of rice,reducing the amount of nitrogen fertilizer in rice could reduce the greenhouse gas emissions in the growing season of succeeding Chinese milk vetch.展开更多
The biomass of wetland plants is highly responsive to environmental factors and plays a crucial role in the dynamics of the soil organic carbon(SOC)pool.In this study,we collected and analyzed global data on wetland p...The biomass of wetland plants is highly responsive to environmental factors and plays a crucial role in the dynamics of the soil organic carbon(SOC)pool.In this study,we collected and analyzed global data on wetland plant biomass from 1980 to 2021.By examining 1134 observations from 182 published papers on wetland ecosystems,we created a comprehensive database of wetland plant above-ground biomass(AGB)and below-ground biomass(BGB).Using this database,we analyzed the biomass characteristics of different climate zones,wetland types and plant species globally.Based on this,we analyzed the differences between the biomass of different plant species and the linkage between AGB and BGB and organic carbon.Our study has revealed that wetland plant AGB is greater in equatorial regions but BGB is highest in polar areas,and lowest in arid and equatorial zones.For plant species,the BGB of the Poales is higher than the AGB but Caryophyllales,Cyperales and Lamiales have higher AGB.Moreover,our findings indicate that BGB plays a more significant role in contributing to the organic carbon pool compared to AGB.Notably,when BGB is less than 1 t C ha^(-1),even slight changes in biomass can have a significant impact on the organic carbon pool.And we observed that the SOC increases by 5.7 t C ha^(-1)when the BGB content is low,indicating that the SOC is more sensitive to changes in biomass under such circumstances.Our study provides a basis for the global response of AGB and BGB of wetland plants to organic carbon.展开更多
Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use ch...Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uniand multivariate (redundancy analysis) methods. Results The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50;p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. Conclusions The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.展开更多
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a vari...The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.展开更多
The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active...The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active pool and its decomposition rate,slow pool and its decomposition rate.The results showed that the size of the active pool from different profiles accounted for 2.09%-3.08% of the total soil organic carbon and the mean residue time was 3.57-17.21 days.And the size of the slow pool accounted for 3.19%-43.55% and the mean residue time was 1.12-4.94 years.Acid hydrolysis(6M HCl) was used to fractionate the passive organic carbon,which accounted for 50.83%-94.44% of the total soil organic carbon.展开更多
Background:Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action plan for management of such ecosystems under global climate change and rapid urbanization.This study,t...Background:Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action plan for management of such ecosystems under global climate change and rapid urbanization.This study,therefore,aims to assess the above-and belowground carbon storage potential of a semi-arid forest ecosystem of Delhi.Methods:For the study,two forest sites were selected,i.e.,north ridge(NRF)and central ridge(CRF).Aboveground tree biomass was estimated by using growing stock volume equations developed by Forest Survey of India and specific wood density.Understory biomass was determined by harvest sampling method.Belowground(root)biomass was determined by using a developed equation.For soil organic carbon(SOC),soil samples were collected at 0–10-cm and 10–20-cm depth and carbon content was estimated.Results:The present study estimated 90.51 Mg ha−1 biomass and 63.49 Mg C ha−1 carbon in the semi-arid forest of Delhi,India.The lower diameter classes showed highest tree density,i.e.,240 and 328 individuals ha−1(11–20 cm),basal area,i.e.,8.7(31–40 cm)and 6.08m2 ha−1(11–20 cm),and biomass,i.e.,24.25 and 23.57 Mg ha−1(11–20 cm)in NRF and CRF,respectively.Furthermore,a significant contribution of biomass(7.8 Mg ha−1)in DBH class 81–90 cm in NRF suggested the importance of mature trees in biomass and carbon storage.The forests were predominantly occupied by Prosopis juliflora(Sw.)DC which also showed the highest contribution to the(approximately 40%)tree biomass.Carbon allocation was maximum in aboveground(40–49%),followed by soil(29.93–37.7%),belowground or root(20–22%),and litter(0.27–0.59%).Conclusion:Our study suggested plant biomass and soils are the potential pools of carbon storage in these forests.Furthermore,carbon storage in tree biomass was found to be mainly influenced by tree density,basal area,and species diversity.Trees belonging to lower DBH classes are the major carbon sinks in these forests.In the study,native trees contributed to the significant amount of carbon stored in their biomass and soils.The estimated data is important in framing forest management plans and strategies aimed at enhancing carbon sequestration potential of semi-arid forest ecosystems of India.展开更多
The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate chan...The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate change are not only the rise in global temperatures, but also changes in the precipitation patterns, which could affect agricultural production, food security, human health and long-term ecosystem properties balance. The deforestation and land degradation are major sources of GHG (greenhouse gas) emissions. International negotiations and dialogues on REDD+ mechanism are held for both national and local level mitigation policies formulation for the reduction of carbon emission from land use, land use change and forestry sector. The reduction of emissions from fossil fuel combustion and avoidance of deforestation and forest/land degradation constitute lasting and long-term solutions for mitigating climate change. There is an urgent need of relevant and efficient methods of measuring forest and soil carbon through application of the latest geospatial technologies, i.e., GIS (geographic information system), Remote Sensing and LiDAR (Light Detection and Ranging). These technologies can support the precise measurement of carbon stocks, as well as, offer cost effective and interoperable data generation methods. The REDD+ mechanism is being promoted worldwide mainly to reduce the diminishing of forest in developing countries. Such an approach must consider use rights, sustainable management of forests, ensuring and safe-guarding the benefit sharing mechanism and good governance, along with the legal framework and local livelihood concerns.展开更多
Old-growth forests play a key-role in reducing atmospheric carbon dioxide(CO_(2)) concentrations by storing large CO_(2)amounts in biomass and soil over time.This quantifies the carbon pool into different forest compa...Old-growth forests play a key-role in reducing atmospheric carbon dioxide(CO_(2)) concentrations by storing large CO_(2)amounts in biomass and soil over time.This quantifies the carbon pool into different forest compartments in three Mediterranean old-growth forests of Southern Italy populated by Pinus laricio,Fagus sylvatica and Abies alba.Ecosystem carbon pools have been assessed per compartment,i.e.,living trees,dead wood,litterfall(foliar and woody),roots and 0-20 cm topsoil,combining the whole old-growth forest mass,(i.e.,using tree allometric relationships,deadwood factor conversions,root-to-shoot ratios,litterfall and soil samplings) by the respective organic carbon concentrations.The results show the considerable capacity of these forest ecosystems in storing CO_(2)in biomass and soil,with carbon pool values ranging from 532.2to 596.5 Mg C ha-1.Living trees and 0-20 cm topsoil had larger carbon pool,contributing 53.0 and 22.1%,respectively.In most cases,organic carbon concentration was higher(more than 60%) than the average carbon conversion rate of 50%,especially in living trees,deadwood,and woody litterfall.This study contributes further scientific evidence of the capacity of old-growth forests in storing CO_(2)in their different compartments,with special evidence on tree biomass,litterfall and mineral soil,thereby highlighting the key role of old-growth forests within the challenge of climate change mitigation.展开更多
Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organ...Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organic carbon pool in China's wetlands at the national scale.An updated data and inventory approach were used to estimate the amount of organic carbon stored in China's wetlands.Primary results are as follows:(1) the organic carbon pool of China's wetlands is between 5.39 and 7.25 Pg,accounting for 1.3%-3.5% of the global level;(2) the estimated values and percentages of the organic carbon contained in the soil,water and vegetation pools in China's wetlands are 5.04-6.19 Pg and 85.4%-93.5%,0.22-0.56 Pg and 4.1%-7.7%,0.13-0.50 Pg and 2.4%-6.9%,respectively.The soil organic carbon pool of China's wetlands is greater than our previous estimate of 3.67 Pg,but is lower than other previous estimates of 12.20 and 8-10 Pg.Based on the discussion and uncertainty analysis,some research areas worthy of future attention are presented.展开更多
Carbon management index(ICM) is used to evaluate the scientificity of soil management.Soil organic carbon(SOC) and readily oxidized carbon (ROC) contents under Leucaena leucocephala stand, Acacia glauca stand,Ac...Carbon management index(ICM) is used to evaluate the scientificity of soil management.Soil organic carbon(SOC) and readily oxidized carbon (ROC) contents under Leucaena leucocephala stand, Acacia glauca stand,Acacia auriculiformis stand, Azadirachta indica stand,wasteland and dry cropland were determined and their ICM were calculated.The results showed that the SOC and ROC contents under the 6 land use types were 4.22-5.92 g·kg<sup>-1</sup> and 1.34-2.33 g·kg<sup>-1</sup>,respectively.No significant differences in SOC contents among these land uses were observed.The ROC contents under the 4 types of woodland,however,were significantly higher than these under dry cropland or wasteland(P【0.05). The ROC were high significantly(P【0.001) correlated(R<sup>2</sup> is 66.3%) with SOC.Compared with wasteland,the ICM ranged from 1.77 to 2.36 under these woodlands,and 0.99 under dry cropland.It is revealed that the litter quantity and land management under these land uses may be the key factors resulting in the variation of ROC.At ecological fragile region of Dry-hot Valley,closure management is useful to sequestrate C in woodland soils.However,the management systems for soil carbon pool under dry cropland are not in a sound way.展开更多
The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils ...The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC.展开更多
基金Supported by the National Key Technology R&D Program during the Eleventh Five-year Plan Period,China(2006BAD02A04)the Key Technology R&D Program of Jiangxi Province,China(2009BNA03800)~~
文摘[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.
基金supported by National Technology Support Project (2008BAD95B10-6)
文摘The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability.
基金This project was supported by the North Dakota Agricultural Experiment Station,North Dakota State University(FARG007858).
文摘Mineralisable soil organic carbon(SOC)pools vary with ecosystem type in response to changes in climate,vegetation and soil properties.Understanding the effect of climate and soil factors on SOC pools is critical for predicting change over time.Surface soil samples from six ecoregions of the United States were analyzed for permanganate oxidizable C(KMnO4-C)and mineralizable C pools.Variations of SOC ranged from 7.9 mg g^-1(Florida site)to 325 mg g^-1(Hawaii site).Mineralisable C pools and KMnO4-C were highest in soils from the Hawaii site.Mean annual precipitation explains SOC and resistant C pool variations.Clay content was related to mineralisable active C pools and bacterial abundance.Mean annual precipitation and clay content are potential variables for predicting changes in SOC pools at large spatial scales.
文摘Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.
基金The New Zealand Ministry for the Environment provided funding to undertake data analysis and preparation of this manuscript under Statement of Work 21078Additional support was provided by the New Zealand Ministry for Business,Innovation and Employment Core funding to Crown Research Institutes.
文摘Background:Natural forests cover approximately 29%of New Zealand’s landmass and represent a large terrestrial carbon pool.In 2002 New Zealand implemented its first representative plot-based natural forest inventory to assess carbon stocks and stock changes in these mostly undisturbed old-growth forests.Although previous studies have provided estimates of biomass or carbon stocks,these were either not fully representative or lacked data from important pools such as dead wood(coarse woody debris).The current analysis provides the most complete estimates of carbon stocks and stock changes in natural forests in New Zealand.Results:We present estimates of per hectare carbon stocks and stock changes in live and dead organic matter pools excluding soil carbon based on the first two measurement cycles of the New Zealand Natural Forest Inventory carried out from 2002 to 2014.These show that New Zealand’s natural forests are in balance and are neither a carbon source nor a carbon sink.The average total carbon stock was 227.0±14.4 tC·ha^(−1)(95%C.I.)and did not change significantly in the 7.7 years between measurements with the net annual change estimated to be 0.03±0.18 tC·ha^(−1)·yr^(−1).There was a wide variation in carbon stocks between forest groups.Regenerating forest had an averaged carbon stock of only 53.6±9.4 tC·ha^(−1) but had a significant sequestration rate of 0.63±0.25 tC·ha^(−1)·yr^(−1),while tall forest had an average carbon stock of 252.4±15.5 tC·ha^(−1),but its sequestration rate did not differ significantly from zero(−0.06±0.20 tC·ha^(−1)·yr^(−1)).The forest alliance with the largest average carbon stock in above and below ground live and dead organic matter pools was silver beech-red beech-kamahi forest carrying 360.5±34.6 tC·ha^(−1).Dead wood and litter comprised 27%of the total carbon stock.Conclusions:New Zealand’s Natural Forest Inventory provides estimates of carbon stocks including estimates for difficult to measure pools such as dead wood and roots.It also provides estimates of uncertainties including effects of model prediction error and sampling variation between plots.Importantly it shows that on a national level New Zealand’s natural forests are in balance.Nevertheless,this is a nationally important carbon pool that requires continuous monitoring to identify potential negative or positive changes.
文摘Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract
基金Supported by the National Key Research and Development Program(No.2016YFD0300208)the National Natural Science Foundation of China(No.41661070)
文摘It is of important referential values for the further understanding of the effects of fertilization on greenhouse gas emissions and the effects of winter green manure on soil carbon pool to study the effects of fertilization on the greenhouse gas emissions and soil carbon pool during the growing season of winter Chinese milk vetch in the process of rice cultivation.This study investigated the effects of nitrogen application in late rice season on the yield of the succeeding Chinese milk vetch and greenhouse gas emissions as well as the soil carbon pool characteristics after the winter planting of Chinese milk vetch with the winter idling of no nitrogen application as the control.The results showed that the yield of Chinese milk vetch was the highest under the nitrogen application of 225 kg/hm^2 in the late rice season,reaching up to 18 388.97 kg/hm^2,which was significantly different from other treatments( P <0.05).Nitrogen application in late rice season increased the emissions of N_2 O,CH_4,CO_2 and global warming potential( GWP) in the growing season of Chinese milk vetch.Compared with the winter idling treatment,winter planting of Chinese milk vetch significantly increased the soil organic carbon and soil carbon pool management index.The yield of Chinese milk vetch was significantly positively correlated with N_2O and CH_4 emissions( P < 0.05),while it presented extremely significant positive correlations with CO_2 emissions,GWP,active organic carbon,and carbon pool management index( P < 0.01).Nitrogen application in the late rice season increased the emissions of N_2 O,CH_4,CO_2,and enhanced the greenhouse gas emission potential during the growing season of Chinese milk vetch.Therefore,without reducing the yield of rice,reducing the amount of nitrogen fertilizer in rice could reduce the greenhouse gas emissions in the growing season of succeeding Chinese milk vetch.
基金supported by the Fundamental Research Funds for the Central Universities(2022BLRD004 and BH2022-03)。
文摘The biomass of wetland plants is highly responsive to environmental factors and plays a crucial role in the dynamics of the soil organic carbon(SOC)pool.In this study,we collected and analyzed global data on wetland plant biomass from 1980 to 2021.By examining 1134 observations from 182 published papers on wetland ecosystems,we created a comprehensive database of wetland plant above-ground biomass(AGB)and below-ground biomass(BGB).Using this database,we analyzed the biomass characteristics of different climate zones,wetland types and plant species globally.Based on this,we analyzed the differences between the biomass of different plant species and the linkage between AGB and BGB and organic carbon.Our study has revealed that wetland plant AGB is greater in equatorial regions but BGB is highest in polar areas,and lowest in arid and equatorial zones.For plant species,the BGB of the Poales is higher than the AGB but Caryophyllales,Cyperales and Lamiales have higher AGB.Moreover,our findings indicate that BGB plays a more significant role in contributing to the organic carbon pool compared to AGB.Notably,when BGB is less than 1 t C ha^(-1),even slight changes in biomass can have a significant impact on the organic carbon pool.And we observed that the SOC increases by 5.7 t C ha^(-1)when the BGB content is low,indicating that the SOC is more sensitive to changes in biomass under such circumstances.Our study provides a basis for the global response of AGB and BGB of wetland plants to organic carbon.
基金funded by projects PID UNER 2223“Carbon capture and fixation as an environmental service of the Espinal forests”National Observatory of Land Degradation and Desertification of ArgentinaPD INTA I040“Design and implementation of a national system for degradation monitoring system at different scales for land degradation neutrality”.
文摘Background The conversion of forests into agricultural lands can be a threat because the forests carbon stored could be a source of emissions. The capacity to improve the predictions on the consequences of land use change depends on the identification of factors that influence carbon pools. We investigated the key driving factors of tree biomass and soil carbon pools in xerophytic forests in northeastern Argentina. Based on analyses of forest structure variables and abiotic factors (topography and soil properties) from 18 mature forests, we evaluated carbon pools using uniand multivariate (redundancy analysis) methods. Results The total carbon pool was estimated at 102.4 ± 24.0 Mg ha−1. Soil organic carbon storage is the single largest carbon pool relative to tree biomass, representing 73.1% of total carbon. Tree canopy cover and basal area were positively correlated with biomass carbon pool (r = 0.77 and r = 0.73, p < 0.001, respectively), proving to be significant drivers of carbon storage in this compartment. Slope, soil clay content and cation-exchange capacity had a better explanation for the variability in soil carbon pools, and all showed significant positive correlations with soil carbon pools (r = 0.64, 0.60 and 0.50;p < 0.05, respectively). The vertisols showed a 27.8% higher soil carbon stock than alfisols. Conclusions The relevance of our study stems from a dearth of information on carbon pools and their drivers in xerophytic forests, and in particular, the importance of this ecosystems’ type for Argentina, because they cover 81.9% of native forest area. Basal area and tree canopy cover exert a strong effect on the carbon pool in tree biomass but not in the soil. The results suggests that there is a potentially major SOC accumulation in forests located in slightly sloping areas and soils with higher topsoil clay content, such as vertisols. This could provide an important reference for implementing forestry carbon sink projects.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0601400)the National Natural Science Foundation of China (Grant Nos. 91751207, 91428308, 41722603, 41606153 and 41422603)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 20720170107)CNOOC Projects (Grant Nos. CNOOC-KJ125FZDXM00TJ001-2014 and CNOOCKJ125FZDXM00ZJ001-2014)
文摘The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km^2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr^(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr^(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr^(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr^(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr^(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr^(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr^(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr^(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr^(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr^(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr^(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr^(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr^(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr^(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.
基金Supported by the Work Project of China Geological Survey (1212010911062)Guangxi Zhuang Autonomous Region Innovation Project (0842008)National Natural Science Foundation (40872213)
文摘The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active pool and its decomposition rate,slow pool and its decomposition rate.The results showed that the size of the active pool from different profiles accounted for 2.09%-3.08% of the total soil organic carbon and the mean residue time was 3.57-17.21 days.And the size of the slow pool accounted for 3.19%-43.55% and the mean residue time was 1.12-4.94 years.Acid hydrolysis(6M HCl) was used to fractionate the passive organic carbon,which accounted for 50.83%-94.44% of the total soil organic carbon.
文摘Background:Assessment of carbon pools in semi-arid forests of India is crucial in order to develop a better action plan for management of such ecosystems under global climate change and rapid urbanization.This study,therefore,aims to assess the above-and belowground carbon storage potential of a semi-arid forest ecosystem of Delhi.Methods:For the study,two forest sites were selected,i.e.,north ridge(NRF)and central ridge(CRF).Aboveground tree biomass was estimated by using growing stock volume equations developed by Forest Survey of India and specific wood density.Understory biomass was determined by harvest sampling method.Belowground(root)biomass was determined by using a developed equation.For soil organic carbon(SOC),soil samples were collected at 0–10-cm and 10–20-cm depth and carbon content was estimated.Results:The present study estimated 90.51 Mg ha−1 biomass and 63.49 Mg C ha−1 carbon in the semi-arid forest of Delhi,India.The lower diameter classes showed highest tree density,i.e.,240 and 328 individuals ha−1(11–20 cm),basal area,i.e.,8.7(31–40 cm)and 6.08m2 ha−1(11–20 cm),and biomass,i.e.,24.25 and 23.57 Mg ha−1(11–20 cm)in NRF and CRF,respectively.Furthermore,a significant contribution of biomass(7.8 Mg ha−1)in DBH class 81–90 cm in NRF suggested the importance of mature trees in biomass and carbon storage.The forests were predominantly occupied by Prosopis juliflora(Sw.)DC which also showed the highest contribution to the(approximately 40%)tree biomass.Carbon allocation was maximum in aboveground(40–49%),followed by soil(29.93–37.7%),belowground or root(20–22%),and litter(0.27–0.59%).Conclusion:Our study suggested plant biomass and soils are the potential pools of carbon storage in these forests.Furthermore,carbon storage in tree biomass was found to be mainly influenced by tree density,basal area,and species diversity.Trees belonging to lower DBH classes are the major carbon sinks in these forests.In the study,native trees contributed to the significant amount of carbon stored in their biomass and soils.The estimated data is important in framing forest management plans and strategies aimed at enhancing carbon sequestration potential of semi-arid forest ecosystems of India.
文摘The degradation of forest and soil contribute significantly to carbon emission to the atmosphere leading to the build-up of carbon dioxide in atmosphere and contributing to global warming. Consequences of climate change are not only the rise in global temperatures, but also changes in the precipitation patterns, which could affect agricultural production, food security, human health and long-term ecosystem properties balance. The deforestation and land degradation are major sources of GHG (greenhouse gas) emissions. International negotiations and dialogues on REDD+ mechanism are held for both national and local level mitigation policies formulation for the reduction of carbon emission from land use, land use change and forestry sector. The reduction of emissions from fossil fuel combustion and avoidance of deforestation and forest/land degradation constitute lasting and long-term solutions for mitigating climate change. There is an urgent need of relevant and efficient methods of measuring forest and soil carbon through application of the latest geospatial technologies, i.e., GIS (geographic information system), Remote Sensing and LiDAR (Light Detection and Ranging). These technologies can support the precise measurement of carbon stocks, as well as, offer cost effective and interoperable data generation methods. The REDD+ mechanism is being promoted worldwide mainly to reduce the diminishing of forest in developing countries. Such an approach must consider use rights, sustainable management of forests, ensuring and safe-guarding the benefit sharing mechanism and good governance, along with the legal framework and local livelihood concerns.
基金the project"Determination of carbon pools in old-growth forests located within the Sila National Park—CARBOSIL"funded by the Ministry of the Environment,Land and Sea Protection—Department for Nature Protection under the Directive on Biodiversity。
文摘Old-growth forests play a key-role in reducing atmospheric carbon dioxide(CO_(2)) concentrations by storing large CO_(2)amounts in biomass and soil over time.This quantifies the carbon pool into different forest compartments in three Mediterranean old-growth forests of Southern Italy populated by Pinus laricio,Fagus sylvatica and Abies alba.Ecosystem carbon pools have been assessed per compartment,i.e.,living trees,dead wood,litterfall(foliar and woody),roots and 0-20 cm topsoil,combining the whole old-growth forest mass,(i.e.,using tree allometric relationships,deadwood factor conversions,root-to-shoot ratios,litterfall and soil samplings) by the respective organic carbon concentrations.The results show the considerable capacity of these forest ecosystems in storing CO_(2)in biomass and soil,with carbon pool values ranging from 532.2to 596.5 Mg C ha-1.Living trees and 0-20 cm topsoil had larger carbon pool,contributing 53.0 and 22.1%,respectively.In most cases,organic carbon concentration was higher(more than 60%) than the average carbon conversion rate of 50%,especially in living trees,deadwood,and woody litterfall.This study contributes further scientific evidence of the capacity of old-growth forests in storing CO_(2)in their different compartments,with special evidence on tree biomass,litterfall and mineral soil,thereby highlighting the key role of old-growth forests within the challenge of climate change mitigation.
基金supported by the National Science and Technology Supporting Program (2012BAJ24B01)the National High Technology Research and Development Program of China (2009AA12200307)+1 种基金the Program of the State Key Laboratory of Remote Sensing Science (Y1Y00247KZ andY1Y00232KZ)the National Natural Science Foundation of China(41201445)
文摘Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organic carbon pool in China's wetlands at the national scale.An updated data and inventory approach were used to estimate the amount of organic carbon stored in China's wetlands.Primary results are as follows:(1) the organic carbon pool of China's wetlands is between 5.39 and 7.25 Pg,accounting for 1.3%-3.5% of the global level;(2) the estimated values and percentages of the organic carbon contained in the soil,water and vegetation pools in China's wetlands are 5.04-6.19 Pg and 85.4%-93.5%,0.22-0.56 Pg and 4.1%-7.7%,0.13-0.50 Pg and 2.4%-6.9%,respectively.The soil organic carbon pool of China's wetlands is greater than our previous estimate of 3.67 Pg,but is lower than other previous estimates of 12.20 and 8-10 Pg.Based on the discussion and uncertainty analysis,some research areas worthy of future attention are presented.
文摘Carbon management index(ICM) is used to evaluate the scientificity of soil management.Soil organic carbon(SOC) and readily oxidized carbon (ROC) contents under Leucaena leucocephala stand, Acacia glauca stand,Acacia auriculiformis stand, Azadirachta indica stand,wasteland and dry cropland were determined and their ICM were calculated.The results showed that the SOC and ROC contents under the 6 land use types were 4.22-5.92 g·kg<sup>-1</sup> and 1.34-2.33 g·kg<sup>-1</sup>,respectively.No significant differences in SOC contents among these land uses were observed.The ROC contents under the 4 types of woodland,however,were significantly higher than these under dry cropland or wasteland(P【0.05). The ROC were high significantly(P【0.001) correlated(R<sup>2</sup> is 66.3%) with SOC.Compared with wasteland,the ICM ranged from 1.77 to 2.36 under these woodlands,and 0.99 under dry cropland.It is revealed that the litter quantity and land management under these land uses may be the key factors resulting in the variation of ROC.At ecological fragile region of Dry-hot Valley,closure management is useful to sequestrate C in woodland soils.However,the management systems for soil carbon pool under dry cropland are not in a sound way.
基金The research was funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).
文摘The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC.