This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning ap...This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.展开更多
Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determi...Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determine the cardiac abnormality,which is time-consuming.In addition,the diagnosis requires experienced medical experts and is error-prone.However,automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures.This study proposes a simple multilayer perceptron(MLP)model for heart disease prediction to reduce computational complexity.ECG dataset containing averaged signals with window size 10 is used as an input.Several competing deep learning and machine learning models are used for comparison.K-fold cross-validation is used to validate the results.Experimental outcomes reveal that the MLP-based architecture can produce better outcomes than existing approaches with a 94.40%accuracy score.The findings of this study show that the proposed system achieves high performance indicating that it has the potential for deployment in a real-world,practical medical environment.展开更多
BACKGROUND Coronary artery disease(CAD)is one of the leading causes of death and disease burden in China and worldwide.A practical and reliable prediction scoring system for CAD risk and severity evaluation is urgentl...BACKGROUND Coronary artery disease(CAD)is one of the leading causes of death and disease burden in China and worldwide.A practical and reliable prediction scoring system for CAD risk and severity evaluation is urgently needed for primary prevention.AIM To examine whether the prediction for atherosclerotic cardiovascular disease risk in China(China-PAR)scoring system could be used for this purpose.METHODS A total of 6813 consecutive patients who underwent diagnostic coronary angiography were enrolled.The China-PAR score was calculated for each patient and CAD severity was assessed by the Gensini score(GS).RESULTS Correlation analysis demonstrated a significant relationship between China-PAR and GS(r=0.266,P<0.001).In receiver operating characteristic curve analysis,the cut-off values of China-PAR for predicting the presence and the severity of CAD were 7.55%with a sensitivity of 55.8%and specificity of 71.8%[area under the curve(AUC)=0.693,95%confidence interval:0.681 to 0.706,P<0.001],and 7.45%with a sensitivity of 58.8%and specificity of 67.2%(AUC=0.680,95%confidence interval:0.665 to 0.694,P<0.001),respectively.CONCLUSION The China-PAR scoring system may be useful in predicting the presence and severity of CAD.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU),Grant Number IMSIU-RG23151.
文摘This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.
文摘Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determine the cardiac abnormality,which is time-consuming.In addition,the diagnosis requires experienced medical experts and is error-prone.However,automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures.This study proposes a simple multilayer perceptron(MLP)model for heart disease prediction to reduce computational complexity.ECG dataset containing averaged signals with window size 10 is used as an input.Several competing deep learning and machine learning models are used for comparison.K-fold cross-validation is used to validate the results.Experimental outcomes reveal that the MLP-based architecture can produce better outcomes than existing approaches with a 94.40%accuracy score.The findings of this study show that the proposed system achieves high performance indicating that it has the potential for deployment in a real-world,practical medical environment.
文摘BACKGROUND Coronary artery disease(CAD)is one of the leading causes of death and disease burden in China and worldwide.A practical and reliable prediction scoring system for CAD risk and severity evaluation is urgently needed for primary prevention.AIM To examine whether the prediction for atherosclerotic cardiovascular disease risk in China(China-PAR)scoring system could be used for this purpose.METHODS A total of 6813 consecutive patients who underwent diagnostic coronary angiography were enrolled.The China-PAR score was calculated for each patient and CAD severity was assessed by the Gensini score(GS).RESULTS Correlation analysis demonstrated a significant relationship between China-PAR and GS(r=0.266,P<0.001).In receiver operating characteristic curve analysis,the cut-off values of China-PAR for predicting the presence and the severity of CAD were 7.55%with a sensitivity of 55.8%and specificity of 71.8%[area under the curve(AUC)=0.693,95%confidence interval:0.681 to 0.706,P<0.001],and 7.45%with a sensitivity of 58.8%and specificity of 67.2%(AUC=0.680,95%confidence interval:0.665 to 0.694,P<0.001),respectively.CONCLUSION The China-PAR scoring system may be useful in predicting the presence and severity of CAD.