The preparation of bifunctional catalysts for oxygen reduction(ORR)and oxygen evolution(OER)is crucial for Zn-air batteries.Here,we report a La doped CoFe_(2)O_(4) spinel catalyst supported on threedimensional graphen...The preparation of bifunctional catalysts for oxygen reduction(ORR)and oxygen evolution(OER)is crucial for Zn-air batteries.Here,we report a La doped CoFe_(2)O_(4) spinel catalyst supported on threedimensional graphene(3D-G),where La can facilitate electron transfer from Co to Fe,leading to increased electron cloud density in Fe and improved catalytic performance.The redshift of the G peak in the Raman spectra indicates the interaction between theπbond of 3D-G and d orbitals in La_(0.2)CoFe_(1.8)O_(4).La_(0.2)CoFe_(1.8)/3D-G exhibits superior ORR performance(E_(1/2)=0.86 V vs.RHE)and OER performance(E_(j=10)=1.55 V vs.RHE)to CoFe_(2)O_(4)/3D-G(E_(1/2)=0.831 V vs.RHE,E_(j=10)=1.603 V vs.RHE).Furthermore,it demonstrates excellent bifunctional oxygen catalytic performance while maintaining high power density and stability in liquid zinc-air batteries(ZABs)and flexible ZABs(F-ZABs).This work presents a viable strategy for utilizing rare earth element doped spinels to enhance oxygen catalyst and ZABs performance.展开更多
Rechargeable neutral aqueous zinc-air batteries(ZABs)are a promising type of energy storage device with longer operating life and less corrosiveness compared with conventional alkaline ZABs.However,the neutral ZABs no...Rechargeable neutral aqueous zinc-air batteries(ZABs)are a promising type of energy storage device with longer operating life and less corrosiveness compared with conventional alkaline ZABs.However,the neutral ZABs normally possess poor oxygen evolution reactions(OERs)and oxygen reduction reactions performance,resulting in a large charge–discharge voltage gap and low round-trip efficiency.Herein,we demonstrate a sunlight-assisted strategy for achieving an ultralow voltage gap of 0.05 V in neutral ZABs by using the FeOOH-decorated BiVO4(Fe-BiVO4)as an oxygen catalyst.Under sunlight,the electrons move from the valence band(VB)of Fe-BiVO_(4) to the conduction band producing holes in VB to promote the OER process and hence reduce the overpotential.Meanwhile,the photopotential generated by the Fe-BiVO_(4) compensates a part of the charging potential of neutral ZABs.Accordingly,the energy loss of the battery could be compensated via solar energy,leading to a record-low gap of 0.05 V between the charge and discharge voltage with a high round-trip efficiency of 94%.This work offers a simple but efficient pathway for solar-energy utilization in storage devices,further guiding the design of high energy efficiency of neutral aqueous ZABs.展开更多
It is reported in this paper a polarographic catalytic double wave of oxygen reduction caused by diphenylamine compounds(diphs).The electrochemical process of the wave includes the polarographic generation of the supe...It is reported in this paper a polarographic catalytic double wave of oxygen reduction caused by diphenylamine compounds(diphs).The electrochemical process of the wave includes the polarographic generation of the superoxide anion O_2^- and the dismutation of O_2^- catalyzed by diphs with redox pseudoreversibility.展开更多
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentratio...OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.展开更多
The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on...The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.展开更多
Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions.In this paper,a highly accessible copper single-atom catalyst(Cu SAC)supported by biocompatible N-doped mes...Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions.In this paper,a highly accessible copper single-atom catalyst(Cu SAC)supported by biocompatible N-doped mesoporous carbon nanospheres was synthesized with the emulsion-template method.The tightly anchored copper single-atom of the catalyst could effectively transform O_(2) into O_(2)−•under ambient conditions by the ultra-large pore size(~23.80 nm)and small particle size(~97.71 nm).Due to multiple synergistically oxidative damages to biomolecules,the Cu SAC could be employed to eliminate different bacteria in vitro without the generation of multidrug resistance(MDR).Moreover,the Cu SAC could also promote wound healing in vivo by eradicating the propagation of bacteria at wound.It is envisioned that the Cu SAC with superior antibacterial performance could be applied in the treatment of related bacterial infection in future.展开更多
基金financially supported by the National Natural Science Foundation of China(22172093 and 21776167)the Natural Science Foundation of Shandong Province,China(ZR2023MB061).
文摘The preparation of bifunctional catalysts for oxygen reduction(ORR)and oxygen evolution(OER)is crucial for Zn-air batteries.Here,we report a La doped CoFe_(2)O_(4) spinel catalyst supported on threedimensional graphene(3D-G),where La can facilitate electron transfer from Co to Fe,leading to increased electron cloud density in Fe and improved catalytic performance.The redshift of the G peak in the Raman spectra indicates the interaction between theπbond of 3D-G and d orbitals in La_(0.2)CoFe_(1.8)O_(4).La_(0.2)CoFe_(1.8)/3D-G exhibits superior ORR performance(E_(1/2)=0.86 V vs.RHE)and OER performance(E_(j=10)=1.55 V vs.RHE)to CoFe_(2)O_(4)/3D-G(E_(1/2)=0.831 V vs.RHE,E_(j=10)=1.603 V vs.RHE).Furthermore,it demonstrates excellent bifunctional oxygen catalytic performance while maintaining high power density and stability in liquid zinc-air batteries(ZABs)and flexible ZABs(F-ZABs).This work presents a viable strategy for utilizing rare earth element doped spinels to enhance oxygen catalyst and ZABs performance.
基金This work was supported by the National Natural Science Foundation of China(Grant No.22278349)Natural Science Foundation of Hebei Province(Grant No.B2023203026)+2 种基金Youth Foundation of Hebei Educational Committee(Grant No.QN2020137)Cultivation Project for Basic Research and Innovation of Yanshan University(Grant No.2021LGZD015)Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(Grant No.22567616H).
文摘Rechargeable neutral aqueous zinc-air batteries(ZABs)are a promising type of energy storage device with longer operating life and less corrosiveness compared with conventional alkaline ZABs.However,the neutral ZABs normally possess poor oxygen evolution reactions(OERs)and oxygen reduction reactions performance,resulting in a large charge–discharge voltage gap and low round-trip efficiency.Herein,we demonstrate a sunlight-assisted strategy for achieving an ultralow voltage gap of 0.05 V in neutral ZABs by using the FeOOH-decorated BiVO4(Fe-BiVO4)as an oxygen catalyst.Under sunlight,the electrons move from the valence band(VB)of Fe-BiVO_(4) to the conduction band producing holes in VB to promote the OER process and hence reduce the overpotential.Meanwhile,the photopotential generated by the Fe-BiVO_(4) compensates a part of the charging potential of neutral ZABs.Accordingly,the energy loss of the battery could be compensated via solar energy,leading to a record-low gap of 0.05 V between the charge and discharge voltage with a high round-trip efficiency of 94%.This work offers a simple but efficient pathway for solar-energy utilization in storage devices,further guiding the design of high energy efficiency of neutral aqueous ZABs.
文摘It is reported in this paper a polarographic catalytic double wave of oxygen reduction caused by diphenylamine compounds(diphs).The electrochemical process of the wave includes the polarographic generation of the superoxide anion O_2^- and the dismutation of O_2^- catalyzed by diphs with redox pseudoreversibility.
基金financially supported by the National Natural Science Foundation of China (No. 21422706)the Program of the Ministry of Science and Technology of China (No. 2012AA062702)
文摘OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples.
文摘The catalytic activity of polycobaltprotoporphyrin(PCoPP)was compared with adsorbed cobaltprotoporphyrin monolayer.The results have shown that PCoPP film shows higher catalytic activity and stability than monolayer on glass carbon electrode in both alkaline and acid solution. Catalytic activity of PCoPP goes through a maximum with increase of film thickness.A model was proposed to explain such dependence.The effect of film thickness and solution pH on the stability of PCoPP film was studied.
基金This work was supported by National Key R&D Program of China 2017YFA(Nos.0208300 and 0700104)the National Natural Science Foundation of China(No.21671180)We thank the funding support from CAS Fujian Institute of Innovation.This work was financially supported by the Cooperation Fund(No.DNL201918)。
文摘Bacterial infection arised from multipathogenic bacteria is a tricky issue that attracts worldwide attentions.In this paper,a highly accessible copper single-atom catalyst(Cu SAC)supported by biocompatible N-doped mesoporous carbon nanospheres was synthesized with the emulsion-template method.The tightly anchored copper single-atom of the catalyst could effectively transform O_(2) into O_(2)−•under ambient conditions by the ultra-large pore size(~23.80 nm)and small particle size(~97.71 nm).Due to multiple synergistically oxidative damages to biomolecules,the Cu SAC could be employed to eliminate different bacteria in vitro without the generation of multidrug resistance(MDR).Moreover,the Cu SAC could also promote wound healing in vivo by eradicating the propagation of bacteria at wound.It is envisioned that the Cu SAC with superior antibacterial performance could be applied in the treatment of related bacterial infection in future.