A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulatio...A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.展开更多
The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into t...The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains.展开更多
The fracture toughness (KIC) values determined by indentation microfracture method (IM ) for SiC whisker reinforced Al2O3 and ZrO2 based composites were calculated with different IM equations and compared with those o...The fracture toughness (KIC) values determined by indentation microfracture method (IM ) for SiC whisker reinforced Al2O3 and ZrO2 based composites were calculated with different IM equations and compared with those obtained by singte edge notched beam (SENB) technique. Experimental results show that the KIC (IM) values calculated with different equations are quite different one from another. For composites without phase transformable components the KIC (IM) and KIC (SENB) values are practically on the same level, but for composites with phase transformable components (partially stabilized zirconia) the KIC (SENB) values are always higher than KIC (IM). This is because that the IM method can not reveal sensitively the toughening effect due to dynamic t-m transformation of ZrO2 as the SENB method does. The accuracy of the IM method depends on the Suitability of the IM equations and was evaluated for the materials used in this investigation. Two new IM equations are suggested with which the KIC (IM ) values can be obtained very close to KIC (SENB) values for composites having phase transformable components.展开更多
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon...Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.展开更多
The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagat...The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.展开更多
Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-p...Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.展开更多
Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation ...Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.展开更多
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide...Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.展开更多
High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-tempe...High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-temperature stability of the material.In this work,vat photopolymerization 3D printing technology was used to achieve toughening of ceramic composite material.The friction sliding of the 3D-printed ceramic macrolayer structure results in effective energy dissipation and redistribution of strain in the whole structure,and macroscale toughening of the ceramic material is realized.In addition,the bridging and elongation of the crack in situ amorphous ceramic whiskers were significant microscopic toughening results,coupled with the toughening of the crack tip of nano-ZrO_(2).Multiscale collaborative toughening methods based on 3D-printed ceramics should find wide applications for materials in service at extreme high temperatures.展开更多
Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via c...Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via controlling the solid-state reaction between zirconia(ZrO_(2))and silica(SiO_(2))are limited.In this work,we proposed a low-temperature strategy to flexibly design and fabricate ZrSiO_(4)-based ceramic composites via doping and tuning the solid-state reaction.Two ceramic composites and ZrSiO_(4) ceramics were in-situ prepared by reactive fast hot pressing(FHP)at approximately 1250℃ based on the proposed strategy,i.e.,a ZrSiO_(4)-SiO_(2) dual-phase composite with bicontinuous interpenetrating and hierarchical microstructures,a ZrSiO_(4)-ZrO_(2) dual-phase composite with a microstructure of ZrO_(2) submicron-and nano-particles embedded in a micron ZrSiO_(4) matrix,and ZrSiO_(4) ceramics with a small amount of residual ZrO_(2) nanoparticles.The results showed that the phase compositions,microstructure configurations,mechanical properties,and wear resistance of the materials can be flexibly regulated by the proposed strategy.Hence,ZrSiO_(4)-based ceramic composites with different properties can be easily fabricated based on different application scenarios.These findings would offer useful guidance for researchers to flexibly fabricate ZrSiO_(4)-based ceramic composites at low temperatures and tailor their microstructures and properties through doping and tuning the solid-state reaction.展开更多
Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensi...Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensile strength and elastic modulus,excellent high-temperature resistance,and oxidation resistance.This paper reviews the preparation and application of different carbide ceramic fibers,including SiC fibers and transition metal carbide(e.g.,ZrC,HfC,and TaC)ceramic fibers.The preparation methods of carbide ceramic fibers are discussed in terms of different fiber diameters,represented by SiC fibers with variable weaving properties and functions due to their differences in diameter.Subsequently,the application of carbide ceramic fibers as high-temperature-resistant structural materials,catalyst carriers,sensors,and supercapacitors are summarized,and strategies for the future development of carbide ceramic fibers are proposed.This review aims to help researchers enhance their understanding of the preparation and utilization of carbide ceramic micro/nanofibers,advancing the development of high-performance carbide ceramic fibers.展开更多
Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,inco...Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,incorporating graphene to ceramics also offers new opportunities for endowing ceramics with versatility.In this review,the recent development of graphene/ceramic bulk composites is summarized with the focus on the construction of well-designed architecture and the realization of multifunctional applications.The processing technologies of the composites are systematically summarized towards homogeneous dispersion and even ordered orientation of graphene sheets in the ceramic matrix.The improvement of composites in mechanical,electrical,electromagnetic,and thermal performances is discussed.The novel multifunctional applications brought by smart integration of graphene in ceramics are also addressed,including microwave absorption,electromagnetic interference shielding,ballistic armors,self-monitor damage sensors,and energy storage and conversion.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M...Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic.展开更多
Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overc...Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.展开更多
The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks...The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks on the mechanical properties of the material. The effect of residual thermostrain, whisker content and aspect ratio is considered. The modulus, initial nonlinear load, strength and nonlinear constitutive relation are calculated and some important conclusions are given.展开更多
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat...Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.展开更多
Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the per...Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the percentage of the two phases varied with sintering temperature. Ceramics sintered at 1400 ℃ were well crystallized and the phase ratio of La2NiO4 was the maximum. The surface morphology observed by scanning electron microscopy (SEM) indicated that the grains of the ceramics sintered at 1400 ℃ were uniform and compact, which were in agreement with the properties of high density and low electrical resistivity of the samples. X-ray diffraction (XRD) patterns of ceramics before and after arc erosion indicated their high structural stability, which resulted in the good arc erosion resistance properties for silver-based electrical contact materials. The contact materials prepared with the ceramic sintered at 1400 ℃ exhibited better mass transition and arc erosion resisting properties.展开更多
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation....The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.展开更多
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ...SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.展开更多
基金Project supported by the National Natural Science Foundation of China (No.90405015)
文摘A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.
文摘The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains.
文摘The fracture toughness (KIC) values determined by indentation microfracture method (IM ) for SiC whisker reinforced Al2O3 and ZrO2 based composites were calculated with different IM equations and compared with those obtained by singte edge notched beam (SENB) technique. Experimental results show that the KIC (IM) values calculated with different equations are quite different one from another. For composites without phase transformable components the KIC (IM) and KIC (SENB) values are practically on the same level, but for composites with phase transformable components (partially stabilized zirconia) the KIC (SENB) values are always higher than KIC (IM). This is because that the IM method can not reveal sensitively the toughening effect due to dynamic t-m transformation of ZrO2 as the SENB method does. The accuracy of the IM method depends on the Suitability of the IM equations and was evaluated for the materials used in this investigation. Two new IM equations are suggested with which the KIC (IM ) values can be obtained very close to KIC (SENB) values for composites having phase transformable components.
基金the Natural Science Fundation of Guangxi Province(No.0575104)the Guangxi Education Department Key Fund(No.2003-22)+1 种基金the Guangxi Fund of New Century Qualified Scholars(No.2002210)the National Science Foundation(No.50672016)
文摘Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.
文摘The fracture toughness and fracture work of A12O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation 'for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.
基金S&T Project No.2006B14601004,Guangdong ProvinceS&T Project No.62047,Educational Bureau,Guanzhou City Fund of Natural Science,Guangdong Province(No.05001885)
文摘Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore, discussed in this paper.
基金supported by the National Science and Technol-ogy Major Project(No.J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12202343)the China Postdoctoral Science Foundation(No.2021M702582).
文摘Porous ceramic composites with directional microchannels from micrometer to dozens of micrometer levels have attracted more and more attention in various fields including aerospace,biomedicines,and thermal insulation due to their excellent fluid permeability,mechanical properties,etc.In this article,we summarize the recent directional porous ceramics developments including their main processing routes and respective properties.Meanwhile,the properties get from different processing routes have been com-pared and analyzed in terms of microstructures,mechanical properties,and permeability.Emphasis has been given to the deeper understanding which can allow one to control the microstructural features of these porous ceramic composites to obtain the desired characteristics.This work can provide a useful reference for the development and application of porous ceramic composites with directional microchan-nels.
基金supported by the National Natural Science Foundation of China(Grant Nos.92060203,52105453,and 92360304)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001).
文摘Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.
基金supported by the Natural Science Foundation of China(No.U22A20129)the National Science and Technology Major Project(No.2017-VI-0002-0072)+2 种基金the National Key Research and Development Program of China(No.2018YFB1106600)the Fundamental Research Funds for the Central Universities(No.WK5290000003)the Students’Innovation and Entrepreneurship Foundation of USTC(Nos.CY2022G10 and CY2022C24)。
文摘High strength and high toughness are mutually exclusive in structural materials.In ceramic materials,increasing toughness usually depends on the introduction of a ductile phase that reduces the strength and high-temperature stability of the material.In this work,vat photopolymerization 3D printing technology was used to achieve toughening of ceramic composite material.The friction sliding of the 3D-printed ceramic macrolayer structure results in effective energy dissipation and redistribution of strain in the whole structure,and macroscale toughening of the ceramic material is realized.In addition,the bridging and elongation of the crack in situ amorphous ceramic whiskers were significant microscopic toughening results,coupled with the toughening of the crack tip of nano-ZrO_(2).Multiscale collaborative toughening methods based on 3D-printed ceramics should find wide applications for materials in service at extreme high temperatures.
基金the financial support of the National Natural Science Foundation of China(52102084)Natural Science Foundation of Hunan Province(2022JJ30718)+1 种基金the financial support of the Youth Innovation Promotion Association Chinese Academy of Sciences(CAS)(2022428)the Science Fund of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing(AMGM2021A08).
文摘Synthetic zircon(ZrSiO_(4))ceramics are typically fabricated at elevated temperatures(over 1500℃),which would lead to high manufacturing cost.Meanwhile,reports about preparing ZrSiO_(4)-based ceramic composites via controlling the solid-state reaction between zirconia(ZrO_(2))and silica(SiO_(2))are limited.In this work,we proposed a low-temperature strategy to flexibly design and fabricate ZrSiO_(4)-based ceramic composites via doping and tuning the solid-state reaction.Two ceramic composites and ZrSiO_(4) ceramics were in-situ prepared by reactive fast hot pressing(FHP)at approximately 1250℃ based on the proposed strategy,i.e.,a ZrSiO_(4)-SiO_(2) dual-phase composite with bicontinuous interpenetrating and hierarchical microstructures,a ZrSiO_(4)-ZrO_(2) dual-phase composite with a microstructure of ZrO_(2) submicron-and nano-particles embedded in a micron ZrSiO_(4) matrix,and ZrSiO_(4) ceramics with a small amount of residual ZrO_(2) nanoparticles.The results showed that the phase compositions,microstructure configurations,mechanical properties,and wear resistance of the materials can be flexibly regulated by the proposed strategy.Hence,ZrSiO_(4)-based ceramic composites with different properties can be easily fabricated based on different application scenarios.These findings would offer useful guidance for researchers to flexibly fabricate ZrSiO_(4)-based ceramic composites at low temperatures and tailor their microstructures and properties through doping and tuning the solid-state reaction.
基金support from the National Natural Science Foundation of China(No.52272100)the Natural Science Foundation of Hunan Province(No.2022JJ30662)the Science and Technology on Advanced Ceramic Fibers and Composites Laboratory(No.WDZC20215250507).
文摘Carbide ceramic fibers are of significant importance for application in the high-tech areas of advanced aircraft engines,aerospace vehicles,and the nuclear industry due to their excellent properties,such as high tensile strength and elastic modulus,excellent high-temperature resistance,and oxidation resistance.This paper reviews the preparation and application of different carbide ceramic fibers,including SiC fibers and transition metal carbide(e.g.,ZrC,HfC,and TaC)ceramic fibers.The preparation methods of carbide ceramic fibers are discussed in terms of different fiber diameters,represented by SiC fibers with variable weaving properties and functions due to their differences in diameter.Subsequently,the application of carbide ceramic fibers as high-temperature-resistant structural materials,catalyst carriers,sensors,and supercapacitors are summarized,and strategies for the future development of carbide ceramic fibers are proposed.This review aims to help researchers enhance their understanding of the preparation and utilization of carbide ceramic micro/nanofibers,advancing the development of high-performance carbide ceramic fibers.
基金This work was supported by the National Key R&D Program of China(No.2017YFA0700705)the National Natural Science Foundation of China(No.51590893).
文摘Graphene with excellent comprehensive properties has been considered as a promising filler to reinforce ceramics.While numerous studies have been devoted to the improvement of mechanical and electrical properties,incorporating graphene to ceramics also offers new opportunities for endowing ceramics with versatility.In this review,the recent development of graphene/ceramic bulk composites is summarized with the focus on the construction of well-designed architecture and the realization of multifunctional applications.The processing technologies of the composites are systematically summarized towards homogeneous dispersion and even ordered orientation of graphene sheets in the ceramic matrix.The improvement of composites in mechanical,electrical,electromagnetic,and thermal performances is discussed.The novel multifunctional applications brought by smart integration of graphene in ceramics are also addressed,including microwave absorption,electromagnetic interference shielding,ballistic armors,self-monitor damage sensors,and energy storage and conversion.
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
基金Project supported by the Doctoral Research Fund of Southwest University of Science and Technology(Grant No.20zx7104)the Sichuan Science and Technology Program(Grant No.2020ZYD055)the National Natural Science Foundation of China(Grant Nos.11905206 and 12075194)。
文摘Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic.
基金supported by the Major Program of Aerospace Advanced Manufacturing Technology Research Foundation NSFC and CASC, China (Grant No. U1537204)the Research Fund of Youth Innovation Promotion Association CAS, China (Grant No. 2014171)
文摘Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites.
文摘The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks on the mechanical properties of the material. The effect of residual thermostrain, whisker content and aspect ratio is considered. The modulus, initial nonlinear load, strength and nonlinear constitutive relation are calculated and some important conclusions are given.
基金Funded by the Guangdong Province Major Science and Technology Program (No.2008A090300002)
文摘Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.
基金supported by the National Basic Research Program of China (2007CB607504)HI-TECH Research and Development Program of China (2001AA327150)
文摘Ceramic LaNiO3 samples were prepared by solid state reaction method at different sintering temperatures. It was found that the resultant was not ABO3 perovskite single phase but dual phase La2NiO4 and NiO, and the percentage of the two phases varied with sintering temperature. Ceramics sintered at 1400 ℃ were well crystallized and the phase ratio of La2NiO4 was the maximum. The surface morphology observed by scanning electron microscopy (SEM) indicated that the grains of the ceramics sintered at 1400 ℃ were uniform and compact, which were in agreement with the properties of high density and low electrical resistivity of the samples. X-ray diffraction (XRD) patterns of ceramics before and after arc erosion indicated their high structural stability, which resulted in the good arc erosion resistance properties for silver-based electrical contact materials. The contact materials prepared with the ceramic sintered at 1400 ℃ exhibited better mass transition and arc erosion resisting properties.
文摘The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite.
基金Funded by the National Key R&D Program of China(No.2018YFB1501002)。
文摘SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples.