期刊文献+
共找到4,705篇文章
< 1 2 236 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
2
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury 被引量:1
3
作者 Yang Li Miaomiao Zhang +5 位作者 Shiyi Li Longlong Zhang Jisu Kim Qiujun Qiu Weigen Lu Jianxin Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第2期76-93,共18页
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre... Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects. 展开更多
关键词 Ginkgolide B cerebral ischemia reperfusion injury(CI/RI) Docosahexaenoic acid Liposomes Brain targeting MICROGLIA
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
4
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion
5
作者 Lin-Yan Huang Ju-Yun Ma +9 位作者 Jin-Xiu Song Jing-Jing Xu Rui Hong Hai-Di Fan Heng Cai Wan Wang Yan-Ling Wang Zhao-Li Hu Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1040-1045,共6页
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In t... Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue(cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury. 展开更多
关键词 CDC42 cerebral ischemia/reperfusion injury GPR91 neural stem cells neurogenesis PROLIFERATION SIRT5 SUCCINATE SUCCINYLATION
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
6
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
A feasible strategy for focal cerebral ischemiareperfusion injury: remote ischemic postconditioning 被引量:21
7
作者 Qiang Liu Shengnian Zhou +3 位作者 Yaodong Wang Fang Qi Yuan Song Siwei Long 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第15期1460-1463,共4页
It is difficult to control the degree of ischemic postconditioning in the brain and other ischemia-sensitive organs.Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on ter... It is difficult to control the degree of ischemic postconditioning in the brain and other ischemia-sensitive organs.Remote ischemic postconditioning could protect some ischemia-sensitive organs through measures on terminal organs.In this study,a focal cerebral ischemia-reperfusion injury model was established using three cycles of remote ischemic postconditioning,each cycle consisted of 10-minute occlusion of the femoral artery and 10-minute opening.The results showed that,remote ischemic postconditioning significantly decreased the percentage of the infarct area and attenuated brain edema.In addition,inflammatory nuclear factor-κB expression was significantly lower,while anti-apoptotic Bcl-2 expression was significantly elevated in the cerebral cortex on the ischemic side.Our findings indicate that remote ischemic postconditioning attenuates focal cerebral ischemia/reperfusion injury,and that the neuroprotective mechanism is mediated by an anti-apoptotic effect and reduction of the inflammatory response. 展开更多
关键词 缺血再灌注损伤 后处理 脑缺血 远程 缺血/再灌注损伤 抗细胞凋亡 保护机制 核因子KB
下载PDF
Ischemic postconditioning enhances glycogen synthase kinase-3β expression and alleviates cerebral ischemia/reperfusion injury 被引量:2
8
作者 Bo Zhao Wenwei Gao +2 位作者 Jiabao Hou Yang Wu Zhongyuan Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1507-1512,共6页
The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct... The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct area,the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced.However,glycogen synthase kinase-3β activity,cortical Bax and caspase-3 expression significantly increased,similar to results following ischemic postconditioning.Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity,a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway,which reduces caspase-3 expression to protect the brain against ischemic injury. 展开更多
关键词 缺血/再灌注损伤 后处理 脑缺血 激酶 合酶 糖原 CASPASE-3 缺血再灌注损伤
下载PDF
Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury 被引量:39
9
作者 Ya-Guang Huang Wei Tao +3 位作者 Song-Bai Yang Jin-Feng Wang Zhi-Gang Mei Zhi-Tao Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期954-961,共8页
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival... Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway.This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases. 展开更多
关键词 nerve REGENERATION AUTOPHAGY ELECTROACUPUNCTURE cerebral ischemIA/reperfusion injury mTOR LC3 Beclin1 P62 NEUROPROTECTION neural REGENERATION
下载PDF
Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury:mechanisms of brain tissue repair 被引量:21
10
作者 Zhen-qiang Zhang Jun-ying Song +1 位作者 Ya-quan Jia Yun-ke Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期435-440,共6页
Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/k... Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury,but the underlying mechanisms remain unclear.In this study,rats were intragastrically given Buyanghuanwu decoction,15 m L/kg,for 3 days.A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion.In rats administered Buyanghuanwu decoction,infarct volume was reduced,serum vascular endothelial growth factor and integrin αvβ3 levels were increased,and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals.These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor(administered through the lateral ventricle for 7 consecutive days).These data suggest that Buyanghuanwu decoction promotes angiogenesis,improves cerebral circulation,and enhances brain tissue repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration Buyanghuanwu decoction cerebral ischemia/reperfusion injury ischemic cerebrovascular disease integrin αvβ3 vascular endothelial growth factor ANGIOGENESIS CD34 neural regeneration
下载PDF
Neuroprotection of Cyperus esculentus L. orientin against cerebral ischemia/reperfusion induced brain injury 被引量:16
11
作者 Si-Qun Jing Sai-Sai Wang +5 位作者 Rui-Min Zhong Jun-Yan Zhang Jin-Zi Wu Yi-Xian Tu Yan Pu Liang-Jun Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期548-556,共9页
Orientin is a flavonoid monomer.In recent years,its importance as a source of pharmacological active substance is growing rapidly due to its properties such as anti-myocardial ischemia,anti-apoptosis,anti-radiation,an... Orientin is a flavonoid monomer.In recent years,its importance as a source of pharmacological active substance is growing rapidly due to its properties such as anti-myocardial ischemia,anti-apoptosis,anti-radiation,anti-tumor,and anti-aging.However,the neuroprotective effects of Orientin on stroke injury have not been comprehensively evaluated.The aim of the present study was thus to investigate the neuroprotective capacity and the potential mechanisms of Cyperus esculentus L.orientin(CLO)from Cyperus esculentus L.leaves against ischemia/reperfusion(I/R)injury using standard orientin as control.For in vitro studies,we treated HT22 cells with CoCl2 as an in vitro ischemic injury model.HT22 cells in the control group were treated with CoCl2.For in vivo studies,we used rat models of middle cerebral artery occlusion,and animals that received sham surgery were used as controls.We found that CLO protected CoCl2-induced HT22 cells against ischemia/reperfusion injury by lowering lipid peroxidation and reactive oxygen species formation as well as decreasing protein oxidation.However,CLO did not reduce the release of lactate dehydrogenase nor increase the activity of superoxide dismutase.Results showed that CLO could decrease neurological deficit score,attenuate brain water content,and reduce cerebral infarct volume,leading to neuroprotection during cerebral ischemia-reperfusion injury.Our studies indicate that CLO flavonoids can be taken as a natural antioxidant and bacteriostastic substance in food and pharmaceutical industry.The molecular mechanisms of CLO could be at least partially attributed to the antioxidant properties and subsequently inhibiting activation of casepase-3.All experimental procedures and protocols were approved on May 16,2016 by the Experimental Animal Ethics Committee of Xinjiang Medical University of China(approval No.IACUC20160516-57). 展开更多
关键词 ANTIOXIDANTS caspase-3 cerebral ischemIA/reperfusion injury cobalt chloride CYPERUS esculentus L.orientin(CLO) lipid PEROXIDATION nerve regeneration NEUROLOGICAL deficits oxidative stress reactive oxygen species
下载PDF
Electroacupuncture preconditioning protects against focal cerebral ischemia/reperfusion injury via suppression of dynamin-related protein 1 被引量:16
12
作者 Gao-feng Zhang Pei Yang +7 位作者 Zeng Yin Huai-long Chen Fu-guo Ma Bin Wang Li-xin Sun Yan-lin Bi Fei Shi Ming-shan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期86-93,共8页
Electroacupuncture preconditioning at acupoint Baihui(GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-r... Electroacupuncture preconditioning at acupoint Baihui(GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1(Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20(depth 2 mm, intensity 1 m A, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated d UTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1. 展开更多
关键词 nerve regeneration ELECTROACUPUNCTURE focal cerebral ischemia/reperfusion injury dynamin-related protein 1 death-associated protein kinases mitochondrial dynamics mitochondrial ultrastructure APOPTOSIS cytochrome c neural regeneration
下载PDF
13-Methyltetradecanoic acid mitigates cerebral ischemia/reperfusion injury 被引量:8
13
作者 Juan Yu Li-nan Yang +4 位作者 Yan-yun Wu Bao-hua Li Sheng-mei Weng Chun-lan Hu Yong-ling Han 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1431-1437,共7页
13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory,antioxidant and anti-apoptotic effects.Previous studies mainly focused on peripheral nerve injury,but seldom on the central nervous sy... 13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory,antioxidant and anti-apoptotic effects.Previous studies mainly focused on peripheral nerve injury,but seldom on the central nervous system.We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury,and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor.This study established rat models of middle cerebral artery occlusion/reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours.At the beginning of reperfusion,13-methyltetradecanoic acid 10,40 or 80 mg/kg was injected into the tail vein.Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume,mitigate cerebral edema,and increased the m RNA and protein expression of basic fibroblast growth factor and vascular endothelial growth factor at 24 hours of reperfusion.The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups.The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion,stimulate the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects. 展开更多
关键词 nerve regeneration brain injury 13-methyltetradecanoic acid cerebral ischemia/reperfusion injury basic fibroblast growth factor vascular endothelial growth factor cerebral infarction cerebral edema neural regeneration
下载PDF
GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury 被引量:16
14
作者 Zi-Wei Han Yue-Chen Chang +5 位作者 Ying Zhou Hang Zhang Long Chen Yang Zhang Jun-Qiang Si Li Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第7期1221-1229,共9页
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum st... Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion(I/R) injury.In this study,three key proteins in the endoplasmic reticulum stress pathway(glucose-regulated protein 78,caspase-12,and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor.Female Sprague-Dawley rats received ovariectomy(OVX),and then cerebral I/R rat models(OVX+ I/R) were established by middle cerebral artery occlusion.Immediately after I/R,rat models were injected with 100 μg/kg E2(OVX + I/R +E2),or 100 μg/kg G protein-coupled estrogen receptor agonist G1(OVX + I/R + G1) in the lateral ventricle.Longa scoring was used to detect neurobehavioral changes in each group.Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining.Morphological changes in neurons were observed by Nissl staining.Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group,neurological function was remarkably improved,infarct volume was reduced,number of normal Nissl bodies was dramatically increased,and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention.To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum,caspase-12 distribution and expression were detected by immunofluorescence,and mRNA and protein levels of glucose-regulated protein 78,caspase-12,and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay.The results showed that compared with the OVX+ I/R group,E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78,C/EBP homologous protein,and caspase-12.However,the G protein-coupled estrogen receptor antagonist G15(OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury.These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus,thereby improving dysfunction caused by cerebral I/R injury.Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine,China(approval No.SHZ A2017-171) on February 27,2017. 展开更多
关键词 nerve REGENERATION cerebral ischemia/reperfusion injury ESTROGEN G protein-coupled ESTROGEN receptor G1 G15 endoplasmic reticulum stress glucose-regulated PROTEIN 78 caspase-12 C/EBP homologous PROTEIN neuronal apoptosis neural REGENERATION
下载PDF
MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway 被引量:6
15
作者 Shi-Jia Yu Ming-Jun Yu +2 位作者 Zhong-Qi Bu Ping-Ping He Juan Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1024-1030,共7页
Apoptosis is an important programmed cell death process involved in ischemia/reperfusion injury.MicroRNAs are considered to play an important role in the molecular mechanism underlying the regulation of cerebral ische... Apoptosis is an important programmed cell death process involved in ischemia/reperfusion injury.MicroRNAs are considered to play an important role in the molecular mechanism underlying the regulation of cerebral ischemia and reperfusion injury.However,whether miR-670 can regulate cell growth and death in cerebral ischemia/reperfusion and the underlying mechanism are poorly understood.In this study,we established mouse models of transient middle artery occlusion and Neuro 2a cell models of oxygen-glucose deprivation and reoxygenation to investigate the potential molecular mechanism by which miR-670 exhibits its effects during cerebral ischemia/reperfusion injury both in vitro and in vivo.Our results showed that after ischemia/reperfusion injury,miR-670 expression was obviously increased.After miR-670 expression was inhibited with an miR-670 antagomir,cerebral ischemia/reperfusion injury-induced neuronal death was obviously reduced.When miR-670 overexpression was induced by an miR-670 agomir,neuronal apoptosis was increased.In addition,we also found that miR-670 could promote Yap degradation via phosphorylation and worsen neuronal apoptosis and neurological deficits.Inhibition of miR-670 reduced neurological impairments after cerebral ischemia/reperfusion injury.These results suggest that microRNA-670 aggravates cerebral ischemia/reperfusion injury through the Yap pathway,which may be a potential target for treatment of cerebral ischemia/reperfusion injury.The present study was approved by the Institutional Animal Care and Use Committee of China Medical University on February 27,2017(IRB No.2017PS035K). 展开更多
关键词 APOPTOSIS cerebral ischemia and reperfusion injury MICRORNA miR-670 neurological function NEURON non-coding RNA PATHWAY
下载PDF
The Akt/glycogen synthase kinase-3β pathway participates in the neuroprotective effect of interleukin-4 against cerebral ischemia/reperfusion injury 被引量:4
16
作者 Mei Li Wen-Wei Gao +4 位作者 Lian Liu Yue Gao Ya-Feng Wang Bo Zhao Xiao-Xing Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第9期1716-1723,共8页
Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also calle... Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017. 展开更多
关键词 Akt/glycogen synthase kinase-3βpathway apoptosis autophagy cerebral ischemia/reperfusion injury infarct volume INTERLEUKIN-4 NEUROPROTECTION oxidative stress
下载PDF
Hypoxic preconditioning reduces NLRP3 inflammasome expression and protects against cerebral ischemia/reperfusion injury 被引量:7
17
作者 Yi-Qiang Pang Jing Yang +2 位作者 Chun-Mei Jia Rui Zhang Qi Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期395-400,共6页
Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuo... Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuous, intermittent hypoxic preconditioning;1 hour later, cerebral ischemia/reperfusion models were generated by middle cerebral artery occlusion and reperfusion. Compared with control mice, mice with cerebral ischemia/reperfusion injury showed increased Bederson neurological function scores, significantly increased cerebral infarction volume, obvious pathological damage to the hippocampus, significantly increased apoptosis;upregulated interleukin-1β, interleukin-6, and interleukin-8 levels in brain tissue;and increased expression levels of NOD-like receptor family pyrin domain containing 3(NLRP3), NLRP inflammasome-related protein caspase-1, and gasdermin D. However, hypoxic preconditioning significantly inhibited the above phenomena. Taken together, these data suggest that hypoxic preconditioning mitigates cerebral ischemia/reperfusion injury in mice by reducing NLRP3 inflammasome expression. This study was approved by the Medical Ethics Committee of the Fourth Hospital of Baotou, China(approval No. DWLL2019001) in November 2019. 展开更多
关键词 apoptosis CASPASE-1 cell death cerebral ischemia/reperfusion injury gasdermin D hippocampus hypoxic preconditioning NLRP3 inflammasome
下载PDF
Ligustrazine monomer against cerebral ischemia/reperfusion injury 被引量:48
18
作者 Hai-jun Gao Peng-fei Liu +7 位作者 Pei-wen Li Zhuo-yan Huang Feng-bo Yu Ting Lei Yong Chen Ye Cheng Qing-chun Mu Hai-yan Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期832-840,共9页
Ligustrazine(2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease.The mechanism of action of ligustrazine us... Ligustrazine(2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease.The mechanism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present.This study summarizes its protective effect,the optimum time window of administration,and the most effective mode of administration for clinical treatment of cerebral ischemia/reperfusion injury.We examine the effects of ligustrazine on suppressing excitatory amino acid release,promoting migration,differentiation and proliferation of endogenous neural stem cells.We also looked at its effects on angiogenesis and how it inhibits thrombosis,the inflammatory response,and apoptosis after cerebral ischemia.We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury.The time window of ligustrazine administration is limited.The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine,CXC137 and CXC195 after cerebral ischemia were better than ligustrazine. 展开更多
关键词 缺血/再灌注损伤 脑血管病 川芎嗪 单体 保护作用 时间窗口 兴奋性氨基酸 行政管理
下载PDF
Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury 被引量:4
19
作者 Tian-Hao Li Hong-Wei Sun +5 位作者 Lai-Jun Song Bo Yang Peng Zhang Dong-Ming Yan Xian-Zhi Liu Yu-Ru Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期824-831,共8页
Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death.Therefore,it is extremely important to search for a target that inhibits autophagy activation.Long non-codin... Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death.Therefore,it is extremely important to search for a target that inhibits autophagy activation.Long non-coding RNA MEG3 participates in autophagy.However,it remains unclear whether it can be targeted to regulate cerebral ischemia/reperfusion injury.Our results revealed that in oxygen and glucose deprivation/reoxygenation-treated HT22 cells,MEG3 expression was obviously upregulated,and autophagy was increased,while knockdown of MEG3 expression greatly reduced autophagy.Furthermore,MEG3 bound mi R-181 c-5 p and inhibited its expression,while mi R-181 c-5 p bound to autophagy-related gene ATG7 and inhibited its expression.Further experiments revealed that mir-181 c-5 p overexpression reversed the effect of MEG3 on autophagy and ATG7 expression in HT22 cells subjected to oxygen and glucose deprivation/reoxygenation.In vivo experiments revealed that MEG3 knockdown suppressed autophagy,infarct volume and behavioral deficits in cerebral ischemia/reperfusion mice.These findings suggest that MEG3 knockdown inhibited autophagy and alleviated cerebral ischemia/reperfusion injury through the mi R-181 c-5 p/ATG7 signaling pathway.Therefore,MEG3 can be considered as an intervention target for the treatment of cerebral ischemia/reperfusion injury.This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Zhengzhou University,China(approval No.XF20190538)on January 4,2019. 展开更多
关键词 ATG7 AUTOPHAGY cerebral infarction cerebral ischemia/reperfusion injury long non-coding RNA miR-181c-5p NEURON oxygen and glucose deprivation/reoxygenation
下载PDF
Diffusion tensor imaging of the hippocampus reflects the severity of hippocampal injury induced by global cerebral ischemia/reperfusion injury 被引量:3
20
作者 Wen-Zhu Wang Xu Liu +2 位作者 Zheng-Yi Yang Yi-Zheng Wang Hai-Tao Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期838-844,共7页
At present,predicting the severity of brain injury caused by global cerebral ischemia/reperfusion injury(GCI/RI)is a clinical problem.After such an injury,clinical indicators that can directly reflect neurological dys... At present,predicting the severity of brain injury caused by global cerebral ischemia/reperfusion injury(GCI/RI)is a clinical problem.After such an injury,clinical indicators that can directly reflect neurological dysfunction are lacking.The change in hippocampal microstructure is the key to memory formation and consolidation.Diffusion tensor imaging is a highly sensitive tool for visualizing injury to hippocampal microstructure.Although hippocampal microstructure,brain-derived neurotrophic factor(BDNF),and tropomyosin-related kinase B(Trk B)levels are closely related to nerve injury and the repair process after GCI/RI,whether these indicators can reflect the severity of such hippocampal injury remains unknown.To address this issue,we established rat models of GCI/RI using the four-vessel occlusion method.Diffusion tensor imaging parameters,BDNF,and Trk B levels were correlated with modified neurological severity scores.The results revealed that after GCI/RI,while neurological function was not related to BDNF and Trk B levels,it was related to hippocampal fractional anisotropy.These findings suggest that hippocampal fractional anisotropy can reflect the severity of hippocampal injury after global GCI/RI.The study was approved by the Institutional Animal Care and Use Committee of Capital Medical University,China(approval No.AEEI-2015-139)on November 9,2015. 展开更多
关键词 brain-derived neurotrophic factor diffusion tensor imaging fractional anisotropy value global cerebral ischemia/reperfusion injury HIPPOCAMPUS Trk B
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部