Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter varia...Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data.展开更多
In economic order quantity models without backordering, both the stock cost of each unit quantity and the order cost of each cycle are characterized as independent fuzzy variables rather than fuzzy numbers as in previ...In economic order quantity models without backordering, both the stock cost of each unit quantity and the order cost of each cycle are characterized as independent fuzzy variables rather than fuzzy numbers as in previous studies. Based on an expected value criterion or a credibility criterion, a fuzzy expected value model and a fuzzy dependent chance programming (DCP) model are constructed. The purpose of the fuzzy expected value model is to find the optimal order quantity such that the fuzzy expected value of the total cost is minimal. The fuzzy DCP model is used to find the optimal order quantity for maximizing the credibility of an event such that the total cost in the planning periods does not exceed a certain budget level. Fuzzy simulations are designed to calculate the expected value of the fuzzy objective function and the credibility of each fuzzy event. A particle swarm optimization (PSO) algorithm based on a fuzzy simulation is designed, by integrating the fuzzy simulation and the PSO algorithm. Finally, a numerical example is given to illustrate the feasibility and validity of the proposed algorithm.展开更多
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
文摘Optimization under uncertainty is a challenging topic of practical importance in the Process Systems Engineering.Since the solution of an optimization problem generally exhibits high sensitivity to the parameter variations, the deterministic model which neglects the parametric uncertainties is not suitable for practical applications. This paper provides an overview of the key contributions and recent advances in the field of process optimization under uncertainty over the past ten years and discusses their advantages and limitations thoroughly. The discussion is focused on three specific research areas, namely robust optimization, stochastic programming and chance constrained programming, based on which a systematic analysis of their applications, developments and future directions are presented. It shows that the more recent trend has been to integrate different optimization methods to leverage their respective superiority and compensate for their drawbacks. Moreover, data-driven optimization, which combines mathematical programming methods and machine learning algorithms, has become an emerging and competitive tool to handle optimization problems in the presence of uncertainty based on massive historical data.
基金the National Natural Science Foundation of China (Nos.70471049 and 70571056)the China PostdoctoralScience Foundation (No. 2004035013)
文摘In economic order quantity models without backordering, both the stock cost of each unit quantity and the order cost of each cycle are characterized as independent fuzzy variables rather than fuzzy numbers as in previous studies. Based on an expected value criterion or a credibility criterion, a fuzzy expected value model and a fuzzy dependent chance programming (DCP) model are constructed. The purpose of the fuzzy expected value model is to find the optimal order quantity such that the fuzzy expected value of the total cost is minimal. The fuzzy DCP model is used to find the optimal order quantity for maximizing the credibility of an event such that the total cost in the planning periods does not exceed a certain budget level. Fuzzy simulations are designed to calculate the expected value of the fuzzy objective function and the credibility of each fuzzy event. A particle swarm optimization (PSO) algorithm based on a fuzzy simulation is designed, by integrating the fuzzy simulation and the PSO algorithm. Finally, a numerical example is given to illustrate the feasibility and validity of the proposed algorithm.