Re-engineering the channel heat exchangers(CHEs)is the goal of many recent studies,due to their great importance in the scope of energy transport in various industrial and environmental fields.Changing the internal ge...Re-engineering the channel heat exchangers(CHEs)is the goal of many recent studies,due to their great importance in the scope of energy transport in various industrial and environmental fields.Changing the internal geometry of the CHEs by using extended surfaces,i.e.,VGs(vortex generators),is the most common technique to enhance the efficiency of heat exchangers.This work aims to develop a newdesign of solar collectors to improve the overall energy efficiency.The study presents a new channel design by introducing VGs.The FVM(finite volume method)was adopted as a numerical technique to solve the problem,with the use of Oil/MWCNT(oil/multi-walled carbon nano-tubes)nanofluid to raise the thermal conductivity of the flow field.The study is achieved for a Re number ranging from12×10^(3) to 27×10^(3),while the concentration(φ)of solid particles in the fluid(Oil)is set to 4%.The computational results showed that the hydrothermal characteristics depend strongly on the flow patterns with the presence of VGs within the CHE.Increasing the Oil/MWCNT rates with the presence of VGs generates negative turbulent velocities with high amounts,which promotes the good agitation of nanofluid particles,resulting in enhanced great transfer rates.展开更多
Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cr...Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cross section area of 5 × 18 mm2 and the other is triangular with dimension of 5 × 9 mm2. Four channels of each configuration have been etched on copper block of 40 mm width,30 mm height, and 200 mm length. The measurements were performed in steady state with air flow rates of 0.002 - 0.005 m3/s, heating powers of 80 - 200 W and channel base temperatures of 48°C, 51°C, 55°C and 60°C. The results showed that the heat transfer to air stream is increased with increasing both of air mass flow rate and channel base temperature. The rectangular channels have better thermal performance than trian- gular ones at the same conditions. Analytical fin approach of 1-D and 2-D model were used to predict the heat transfer rate and outlet air temperature from channels heat sink. Theoretical results have been compared with experimental data. The predicted values for outlet air temperatures using the two models agree well with a deviation less than ±10%. But for the heat transfer data, the deviation is about +30% to –60% for 1-D model, and –5% to –80% for 2-D model. The global Nusselt number of the present experimental data is empirically correlated as with accuracy of ±20% for and compared with other literature correlations.展开更多
The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w...The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.展开更多
Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overa...Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overall stability. In this paper, two optimized designs of DLMCHS with cutting baffles on top and bottom layers are presented based on the traditional DLMCHS. The heat transfer and thermal stress performance are numerically analyzed and compared with the traditional DLMCHS. The results indicate that cutting baffles of micro-channels remarkably improves heat transfer and thermal stress performance. The optimized design with cutting baffles on the bottom layer decreases thermal strain but deteriorates heat transfer performance. The model with cutting baffles on the top layer has better combined thermal strain and heat transfer performance, which reduces thermal strain by about 1.5 times and enhances heat transfer by about 26.5%. For the design with cutting baffles on the top board, adding metal foam in the inlet collector can decrease the total minimum thermal strain by 51.4% and maximum temperature by 1.4 K, and increase the Nusselt number by 15%. These results indicate that DLMCHS with cutting baffles on the top layer has great potential for thermal managements on electronic devices with high power density.展开更多
There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficul...There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.展开更多
On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to...On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.展开更多
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exa...In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.展开更多
Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000...Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number.展开更多
A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are ...A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are discretized by the second order upwind differencing scheme, decoupling with the SIMPLE (semi-implicit method for pressure linked equations) algorithm and are solved using a finite volume approach. The fluid flow and heat transfer characteristics are presented for the Reynolds numbers based on the channel hydraulic diameter ranging from 104 to 4 ′ 104. The effects of rib shape and orientation on heat transfer and pressure drop in the channel are investigated for six different rib configurations. Rib arrays of 45° inclined and 45° V-shaped are mounted in inline and staggered arrangements on the lower and upper walls of the channel. In addition, the performance of these ribs is also compared with the 90° transverse ribs.展开更多
The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel r...The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.展开更多
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effect...The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.展开更多
In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. An...In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. Analytical expressions are obtained by choosing the axial velocity;temperature distribution and the normal velocity of the blood depend on y and t only to convert the system of partial differential equations into system of ordinary differential equations under the conditions defined in our model. The model has been analyzed to find the effects of various parameters such as, Hartmann number, heat source parameter and Prandtl number on the axial velocity, temperature distribution and the normal velocity. The numerical solutions of axial velocity, temperature distributions and normal velocity are shown graphically for better understanding of the problem. Hence, the present mathematical model gives a simple form of axial velocity, temperature distribution and normal velocity of the blood flow so that it will help not only people working in the field of Physiological fluid dynamics but also to the medical practitioners.展开更多
An analysis of oscillatory flow of a viscoelastic fluid and mass transfer along a porous oscillating channel with radiative heat transfer in presence of first-order chemical reaction is considered. The problem is conc...An analysis of oscillatory flow of a viscoelastic fluid and mass transfer along a porous oscillating channel with radiative heat transfer in presence of first-order chemical reaction is considered. The problem is concerned with the flow through a channel in which the viscoelastic fluid is injected on one boundary of the channel with a constant velocity, while it is sucked off at the other boundary with the same velocity. The two boundaries are considered to be in close contact with the two plates placed parallel to each other. The effect of temperature oscillations at the plate (upper wall) where the suction takes place is taken into consideration. The plates are supposed to be oscillating with a given velocity in their own planes. Analytical expressions for velocity profile, the temperature, concentration profile, wall shear stress on the upper wall are obtained. The profiles of the velocity and skin friction have been presented graphically for different values of the viscoelastic parameters with the combination of the other flow parameters encountered in the problem under investigation. It is observed that velocity decrease with the increasing values of the viscoelastic parameter in comparison with Newtonian fluid. Also, the wall shear stress increase with the increasing values of the viscoelastic parameter.展开更多
This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the ange...This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the angel of perforation, on the fluid flow and heat transfer. The numerical results appeared in good agreement with previous experimental data under the same operating conditions. The results indicated that large size and positive angle of perforation changed the fluid flow pattern and the local Nusselt-number distribution fundamentally. It is noteworthy that a more uniform distribution of Nusselt-number was achieved by increasing the diameter of perforation.展开更多
In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscou...In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscous dissipation are considered. The problem is modulated mathematically by a set of nonlinear partial differential equations which describe the conservation of mass, momentum, energy and concentration of nanoparticles. The non-dimensional form of these equations is simplified under the assumption of long wavelength and low Reynolds number, and then resulting equations of coupled nonlinear differential equations are tackled numerically with appropriate boundary conditions. Graphical results are presented for dimensionless velocity, temperature, concentration and pressure gradient in order to illustrate the variations of various parameters of this problem on these obtained solutions.展开更多
Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 8.0, respectively...Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 8.0, respectively. Reynolds number of the flow is 200 and it is over the critical Reynolds number. Over the value, the flow in the symmetric channel becomes to deflect to one side of the walls. Transient response characteristics of the flow and heat transfer in the channel with the fully developed flow imposed one cycle of a pulsating fluctuation at the inlet are investigated. Vortex structure generated in the channel is visualized with a helicity isosurface. In the case of the fluctuation of Strouhal number 0.05, small streamwise vortices appear near the side walls and slightly upstream of the reattachment region of the short separation bubble. The vortices elongate and shed some vortices. These vortices attract some pairs of the streamwise vortices near the reattachment region quickly and they drift downstream along the side walls. They are inclined from the walls and are decaying gradually. It is clarified that high Nusselt number area appears and shifts downstream in accordance with the root of the vortices.展开更多
Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational...Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.展开更多
基金supported by the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,11601485).
文摘Re-engineering the channel heat exchangers(CHEs)is the goal of many recent studies,due to their great importance in the scope of energy transport in various industrial and environmental fields.Changing the internal geometry of the CHEs by using extended surfaces,i.e.,VGs(vortex generators),is the most common technique to enhance the efficiency of heat exchangers.This work aims to develop a newdesign of solar collectors to improve the overall energy efficiency.The study presents a new channel design by introducing VGs.The FVM(finite volume method)was adopted as a numerical technique to solve the problem,with the use of Oil/MWCNT(oil/multi-walled carbon nano-tubes)nanofluid to raise the thermal conductivity of the flow field.The study is achieved for a Re number ranging from12×10^(3) to 27×10^(3),while the concentration(φ)of solid particles in the fluid(Oil)is set to 4%.The computational results showed that the hydrothermal characteristics depend strongly on the flow patterns with the presence of VGs within the CHE.Increasing the Oil/MWCNT rates with the presence of VGs generates negative turbulent velocities with high amounts,which promotes the good agitation of nanofluid particles,resulting in enhanced great transfer rates.
文摘Heat transfer experiments were conducted to investigate the thermal performance of air cooling through mini-channel heat sink with various configurations. Two types of channels have been used, one has a rectangular cross section area of 5 × 18 mm2 and the other is triangular with dimension of 5 × 9 mm2. Four channels of each configuration have been etched on copper block of 40 mm width,30 mm height, and 200 mm length. The measurements were performed in steady state with air flow rates of 0.002 - 0.005 m3/s, heating powers of 80 - 200 W and channel base temperatures of 48°C, 51°C, 55°C and 60°C. The results showed that the heat transfer to air stream is increased with increasing both of air mass flow rate and channel base temperature. The rectangular channels have better thermal performance than trian- gular ones at the same conditions. Analytical fin approach of 1-D and 2-D model were used to predict the heat transfer rate and outlet air temperature from channels heat sink. Theoretical results have been compared with experimental data. The predicted values for outlet air temperatures using the two models agree well with a deviation less than ±10%. But for the heat transfer data, the deviation is about +30% to –60% for 1-D model, and –5% to –80% for 2-D model. The global Nusselt number of the present experimental data is empirically correlated as with accuracy of ±20% for and compared with other literature correlations.
文摘The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.
基金supported in part by the National Natural Science Foundation of China (No. 51676208)the Fundamental Research Funds for the Central Universities (No. 18CX07012A)
文摘Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overall stability. In this paper, two optimized designs of DLMCHS with cutting baffles on top and bottom layers are presented based on the traditional DLMCHS. The heat transfer and thermal stress performance are numerically analyzed and compared with the traditional DLMCHS. The results indicate that cutting baffles of micro-channels remarkably improves heat transfer and thermal stress performance. The optimized design with cutting baffles on the bottom layer decreases thermal strain but deteriorates heat transfer performance. The model with cutting baffles on the top layer has better combined thermal strain and heat transfer performance, which reduces thermal strain by about 1.5 times and enhances heat transfer by about 26.5%. For the design with cutting baffles on the top board, adding metal foam in the inlet collector can decrease the total minimum thermal strain by 51.4% and maximum temperature by 1.4 K, and increase the Nusselt number by 15%. These results indicate that DLMCHS with cutting baffles on the top layer has great potential for thermal managements on electronic devices with high power density.
文摘There is currently a growing demand for developing efficient techniques for cooling integrated electronic devices with ever increasing heat generation power. To better tackle the high-density heat dissipation difficulty within the limited space, this paper is dedicated to clarify the heat transfer behaviors of the liquid metal flowing in mini-channel exchangers with different geometric configurations. A series of comparative experiments using liquid metal alloy Ga68%In20%Sn12% as coolant were conducted under prescribed mass flow rates in three kinds of heat exchangers with varied geometric sizes. Meanwhile, numerical simulations for the heat exchangers under the same working conditions were also performed which well interpreted the experimental measurements. The simulated heat sources were all cooled down by these three heat dissipation apparatuses and the exchanger with the smallest channel width was found to have the largest mean heat transfer coefficient at all conditions due to its much larger heat transfer area. Further, the present work has also developed a correlation equation for characterizing the Nusselt number depending on Peclet number, which is applicable to the low Peclet number case with constant heat flux in the hydrodynamically developed and thermally developing region in the rectangular channel. This study is expected to provide valuable reference for designing future liquid metal based mini-channel heat exchanger.
文摘On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.
文摘In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.
基金Supported by the National Natural Science Foundation of China(51276090)
文摘Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number.
文摘A numerical investigation has been carried out to examine turbulent flow and heat transfer characteristics in a three-dimensional ribbed square channels. Fluent 6.3 CFD code has been used. The governing equations are discretized by the second order upwind differencing scheme, decoupling with the SIMPLE (semi-implicit method for pressure linked equations) algorithm and are solved using a finite volume approach. The fluid flow and heat transfer characteristics are presented for the Reynolds numbers based on the channel hydraulic diameter ranging from 104 to 4 ′ 104. The effects of rib shape and orientation on heat transfer and pressure drop in the channel are investigated for six different rib configurations. Rib arrays of 45° inclined and 45° V-shaped are mounted in inline and staggered arrangements on the lower and upper walls of the channel. In addition, the performance of these ribs is also compared with the 90° transverse ribs.
基金supported by the National Natural Science Foundation of China(No.51276088)
文摘The heat transfer and pressure loss characteristics on a square channel with two opposite surfaces roughened by high blockage ratio ribs are measured by systematic experiments.Reynolds numbers studied in the channel range from 1 400 to 8 000.The ratios of rib height to hydraulic diameter (e/D) are 0.2and 0.33,respectively.The ratio of rib spacing to height (P/e) ranges from 5to 15.The rib orientations in the opposite surfaces are symmetrical and staggered arrangements.The results show that the heat transfer coefficients are increased with the increase of rib height and Reynolds number,though at the cost of higher pressure losses.When the rib spacing to height ratio is 10,it keeps the highest heat transfer coefficient in three kinds of rib spacing to height ratios 5,10 and 15.The heat transfer coefficient of symmetrical arrangement ribs is higher than that of the staggered arrangement ribs,but the pressure loss of the symmetrical arrangement ribs is larger than that of the staggered arrangement ribs.
基金Project supported by the National Natural Science Foundation of China (No. 10972136) and the Doctoral Fund for New Teachers of Higher Eduation of China (No. 20090073120014)
文摘The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
文摘In the present study, a mathematical model of unsteady blood flow through parallel plate channel under the action of an applied constant transverse magnetic field is proposed. The model is subjected to heat source. Analytical expressions are obtained by choosing the axial velocity;temperature distribution and the normal velocity of the blood depend on y and t only to convert the system of partial differential equations into system of ordinary differential equations under the conditions defined in our model. The model has been analyzed to find the effects of various parameters such as, Hartmann number, heat source parameter and Prandtl number on the axial velocity, temperature distribution and the normal velocity. The numerical solutions of axial velocity, temperature distributions and normal velocity are shown graphically for better understanding of the problem. Hence, the present mathematical model gives a simple form of axial velocity, temperature distribution and normal velocity of the blood flow so that it will help not only people working in the field of Physiological fluid dynamics but also to the medical practitioners.
文摘An analysis of oscillatory flow of a viscoelastic fluid and mass transfer along a porous oscillating channel with radiative heat transfer in presence of first-order chemical reaction is considered. The problem is concerned with the flow through a channel in which the viscoelastic fluid is injected on one boundary of the channel with a constant velocity, while it is sucked off at the other boundary with the same velocity. The two boundaries are considered to be in close contact with the two plates placed parallel to each other. The effect of temperature oscillations at the plate (upper wall) where the suction takes place is taken into consideration. The plates are supposed to be oscillating with a given velocity in their own planes. Analytical expressions for velocity profile, the temperature, concentration profile, wall shear stress on the upper wall are obtained. The profiles of the velocity and skin friction have been presented graphically for different values of the viscoelastic parameters with the combination of the other flow parameters encountered in the problem under investigation. It is observed that velocity decrease with the increasing values of the viscoelastic parameter in comparison with Newtonian fluid. Also, the wall shear stress increase with the increasing values of the viscoelastic parameter.
文摘This study provided a new configuration of the 180-deg round turned channel with a perforated divider, as well as numerically investigated the effect of perforations, including the diameter of perforation and the angel of perforation, on the fluid flow and heat transfer. The numerical results appeared in good agreement with previous experimental data under the same operating conditions. The results indicated that large size and positive angle of perforation changed the fluid flow pattern and the local Nusselt-number distribution fundamentally. It is noteworthy that a more uniform distribution of Nusselt-number was achieved by increasing the diameter of perforation.
文摘In this work, the peristaltic motion of a nano non-Newtonian fluid which obeys Carreau model through a porous medium inside an asymmetric channel is investigated. The hall current effects with Joule heating and viscous dissipation are considered. The problem is modulated mathematically by a set of nonlinear partial differential equations which describe the conservation of mass, momentum, energy and concentration of nanoparticles. The non-dimensional form of these equations is simplified under the assumption of long wavelength and low Reynolds number, and then resulting equations of coupled nonlinear differential equations are tackled numerically with appropriate boundary conditions. Graphical results are presented for dimensionless velocity, temperature, concentration and pressure gradient in order to illustrate the variations of various parameters of this problem on these obtained solutions.
文摘Numerical results of three-dimensional separated flow and heat transfer in an enlarged rectangular channel are presented in this paper. The expansion ratio and aspect ratio of the channel are 2.0 and 8.0, respectively. Reynolds number of the flow is 200 and it is over the critical Reynolds number. Over the value, the flow in the symmetric channel becomes to deflect to one side of the walls. Transient response characteristics of the flow and heat transfer in the channel with the fully developed flow imposed one cycle of a pulsating fluctuation at the inlet are investigated. Vortex structure generated in the channel is visualized with a helicity isosurface. In the case of the fluctuation of Strouhal number 0.05, small streamwise vortices appear near the side walls and slightly upstream of the reattachment region of the short separation bubble. The vortices elongate and shed some vortices. These vortices attract some pairs of the streamwise vortices near the reattachment region quickly and they drift downstream along the side walls. They are inclined from the walls and are decaying gradually. It is clarified that high Nusselt number area appears and shifts downstream in accordance with the root of the vortices.
基金Supported by the China Scholarship Council (CSC) under Grant No.2011BSZF88
文摘Several industrial applications such as electronic devices,heat exchangers,gas turbine blades,etc.need cooling processes.The internal cooling technique is proper for some applications.In the present work,computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in the rectangular ribbed channel using different coolants.Several coolants such as air,steam,air/mist and steam/mist were investigated.The shear stress transport model(SST)is selected by comparing the standard k-ωand Omega Reynolds Stress(ωRS)turbulence models with experimental results.The results indicate that the heat transfer coefficients are enhanced in the ribbed channel while injecting small amounts of mist.The heat transfer coefficients of air/mist,steam and steam/mist increase by 12.5%,49.5%and 107%over that of air,respectively.Furthermore,in comparison to air,the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when the mist mass fraction increases from 2%to 8%,respectively.The steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the considered range of mist mass fraction.