期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A new adaptive mutative scale chaos optimization algorithm and its application 被引量:22
1
作者 Jiaqiang E Chunhua WANG +1 位作者 Yaonan WANG Jinke GONG 《控制理论与应用(英文版)》 EI 2008年第2期141-145,共5页
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ... Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision. 展开更多
关键词 ADAPTIVE Mutative scale chaos optimization algorithm One-dimensional iterative chaotic self-map
下载PDF
A new optimization algorithm based on chaos 被引量:19
2
作者 LU Hui-juan ZHANG Huo-ming MA Long-hua 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期539-542,共4页
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ... In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones. 展开更多
关键词 chaos optimization algorithm (COA) Carrier wave two times Multi-variables optimization Carrier wave triple frequency
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:15
3
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
4
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm chaos genetic algorithm optimization efficiency
下载PDF
A Chaotic Approach for the Bi-level Discrete Equilibrium Network Design Problem
5
《Journal of Systems Science and Information》 2006年第2期193-202,共10页
A chaotic algorithm for providing a solution to the bi-level Discrete Equilibrium Network Design Problem (NDP) is discussed following an introduction of the Discrete Network Design Problem (DNDP) model and Chaos O... A chaotic algorithm for providing a solution to the bi-level Discrete Equilibrium Network Design Problem (NDP) is discussed following an introduction of the Discrete Network Design Problem (DNDP) model and Chaos Optimization Algorithms (COA). A description of the chaotic approach for the DNDP model is described in details. Then a numerical example for the DNDP is carried out to investigate the chaotic approach. The results have been encouraging, indicating that the chaotic approach has great potential ability in finding the optimal solution of DNDP models. 展开更多
关键词 discrete equilibrium network design problem bi-level programming model chaos optimization algorithms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部