期刊文献+
共找到401篇文章
< 1 2 21 >
每页显示 20 50 100
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:20
1
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
下载PDF
Fuzzy neural and chaotic searching hybrid algorithm and its application in electric customers’s credit risk evaluation 被引量:2
2
作者 李翔 刘广迎 乞建勋 《Journal of Central South University of Technology》 EI 2007年第1期140-143,共4页
To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning abilit... To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning ability of the FNN was markedly enhanced. Customers’ actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN, the precision of the proposed algorithm can be enhanced by 2.2% and 4.5%, respectively. 展开更多
关键词 power supply enterprise credit-risk fuzzy neural network chaotic searching
下载PDF
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem
3
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
下载PDF
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:3
4
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:5
5
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
下载PDF
Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method 被引量:14
6
作者 李向涛 殷明浩 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期113-118,共6页
We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to es... We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained. 展开更多
关键词 cuckoo search algorithm chaotic system parameter estimation orthogonal learning
原文传递
Research on Equivalent Modeling Method of AC-DC Power Networks Integrating with Renewable Energy Generation
7
作者 Weigang Jin Lei Chen +3 位作者 Yifei Li Shencong Zheng Yuqi Jiang Hongkun Chen 《Energy Engineering》 EI 2023年第11期2469-2487,共19页
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents... Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed. 展开更多
关键词 Equivalent modeling AC-DC power networks renewable energy generation wind farm improved chaotic cuckoo search algorithm
下载PDF
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:1
8
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(CSSA) BP神经网络(BPNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
下载PDF
一种改进的变权科莫多优化算法及其应用
9
作者 梁少华 李林轩 叶青 《长江大学学报(自然科学版)》 2024年第1期117-126,共10页
针对科莫多算法(KMA)在求解复杂函数和高维情况下容易出现早熟收敛的问题,提出了一种改进的变权科莫多优化算法(VWCKMA)。首先利用Tent混沌映射产生的序列对科莫多个体位置进行位置初始化,为全局搜索的多样性奠定基础。然后提出可变惯... 针对科莫多算法(KMA)在求解复杂函数和高维情况下容易出现早熟收敛的问题,提出了一种改进的变权科莫多优化算法(VWCKMA)。首先利用Tent混沌映射产生的序列对科莫多个体位置进行位置初始化,为全局搜索的多样性奠定基础。然后提出可变惯性权重,分别对不同社会等级的科莫多个体的运动进行不同控制,较好地提高了收敛速度。最后利用Tent混沌映射进行局部扰动,使其能够进行更加精确的局部搜索,避免局部最优值。仿真实验表明,在单峰函数和多峰函数求解的标准差和均值中,VWCKMA在收敛精度和收敛速度方面均有很大的提高。针对实际空气污染物PM_(2.5)预测非线性的问题,利用VWCKMA对BP神经网络的权值和阈值进行迭代寻优,基于最优参数的条件下使用BP神经网络对PM_(2.5)进行预测。实验结果表明预测准确率为85.085%,相比单一BP神经网络预测准确率提高19.85个百分点,体现VWCKMA具有一定的实践应用价值。 展开更多
关键词 科莫多算法 Tent混沌映射 惯性权重 局部搜索 PM_(2.5)预测
下载PDF
基于多策略麻雀搜索算法的机器人路径规划 被引量:1
10
作者 杨红 杨超 《沈阳大学学报(自然科学版)》 CAS 2024年第2期141-152,共12页
通过多种策略对基本麻雀搜索算法(SSA)进行改进,以解决麻雀搜索算法后期由于种群多样性丢失而导致的全局优化精度和速度问题。首先,改进无限折叠迭代映射(ICMIC)初始化种群,将自适应分段步长因子引入麻雀探测器的位置更新公式中,使麻雀... 通过多种策略对基本麻雀搜索算法(SSA)进行改进,以解决麻雀搜索算法后期由于种群多样性丢失而导致的全局优化精度和速度问题。首先,改进无限折叠迭代映射(ICMIC)初始化种群,将自适应分段步长因子引入麻雀探测器的位置更新公式中,使麻雀搜索算法观察者的固定比例系数随迭代次数动态变化。然后,将观察者的位置与新公式和正弦余弦算法(SCA)相结合,并干扰先前的观察者步长。最后,在基准测试函数上比较了改进的麻雀搜索算法(ISSA)、麻雀搜索算法(SSA)、鲸鱼算法(WOA)、灰狼算法(GWO)、改进的灰狼算法(CGWO)、正弦余弦算法(SCA)和粒子群优化算法(PSO)的收敛性和准确性,并将其应用于路径规划。实验表明改进的麻雀搜索算法具有良好的优化性能。 展开更多
关键词 麻雀搜索算法 无限折叠迭代混沌映射 自适应惯性权重 正余弦算法 路径规划
下载PDF
混合进化算法求解多环节资源配置优化问题
11
作者 袁小芳 杨育辉 《计算机工程与设计》 北大核心 2024年第8期2306-2312,共7页
资源配置优化问题是制造业价值链管理的基础问题。然而,现有研究多集中在生产环节,对制造全生命周期的整体考虑不足。研究考虑多环节的制造全生命周期资源配置优化问题(MLCRAOP),旨在通过优化研发设计、生产制造、运维服务和配套设备供... 资源配置优化问题是制造业价值链管理的基础问题。然而,现有研究多集中在生产环节,对制造全生命周期的整体考虑不足。研究考虑多环节的制造全生命周期资源配置优化问题(MLCRAOP),旨在通过优化研发设计、生产制造、运维服务和配套设备供应环节的服务资源,提升全生命周期的资源配置客户满意度。将时间、成本、质量指标纳入目标函数构建整数规划模型,提出一种混合进化算法用于求解MLCRAOP。通过在设计案例上的对比实验,验证了混合进化算法具有优异的性能。 展开更多
关键词 资源配置优化 价值链管理 制造全生命周期 服务资源 混合进化算法 混沌初始化 邻域搜索
下载PDF
基于混沌万有引力算法对APSIM模型中旱地春小麦产量形成参数的优化
12
作者 张博 董莉霞 +4 位作者 李广 燕振刚 刘强 王钧 张燕 《麦类作物学报》 CAS CSCD 北大核心 2024年第7期919-925,共7页
为了解决APSIM模型中春小麦产量形成参数本土化率定过程中所面临的耗时长、精度差、效率低等问题,采用混沌万有引力(chaotic gravitational search algorithm, CGSA)算法,基于1971-2014和2018-2021年甘肃省定西市统计年鉴中的产量数据以... 为了解决APSIM模型中春小麦产量形成参数本土化率定过程中所面临的耗时长、精度差、效率低等问题,采用混沌万有引力(chaotic gravitational search algorithm, CGSA)算法,基于1971-2014和2018-2021年甘肃省定西市统计年鉴中的产量数据以及2015-2017年定西市安定区凤翔镇安家沟村的大田试验数据、1971-2021年定西市安定区的产量和气象资料,对春小麦产量形成参数进行优化。结果表明,采用CGSA优化参数后,均方根误差(RMSE)、归一化均方根误差(NRMSE)和模型有效性指数(ME)的平均值分别为22.98 kg·hm^(-2)、1.393%和0.995,说明模型在甘肃省定西市春小麦产量的评估中表现出较好的适应性。此外,CGSA具有较好的全局寻优性能和较快的收敛性,为APSIM模型的参数优化提供了一种高效、精准的方法。 展开更多
关键词 春小麦 旱地 APSIM模型 产量形成 混沌万有引力算法 参数优化
下载PDF
基于改进的SSA-BP神经网络的矿井突水水源识别模型研究
13
作者 刘伟韬 李蓓蓓 +2 位作者 杜衍辉 韩梦珂 赵吉园 《工矿自动化》 CSCD 北大核心 2024年第2期98-105,115,共9页
机器学习与寻优算法的结合在矿井突水水源识别上得到广泛应用,但突水水样数据具有随机性且寻优算法易陷入局部最优,提高模型泛化能力和跳出局部最优需进一步研究。针对上述问题,提出了一种改进的麻雀搜索算法(SSA)优化BP神经网络模型,... 机器学习与寻优算法的结合在矿井突水水源识别上得到广泛应用,但突水水样数据具有随机性且寻优算法易陷入局部最优,提高模型泛化能力和跳出局部最优需进一步研究。针对上述问题,提出了一种改进的麻雀搜索算法(SSA)优化BP神经网络模型,用于对矿井突水水源进行定量辨识。以鲁能煤电股份有限公司阳城煤矿为研究对象,通过常规离子浓度分析、Piper三线图对该煤矿水样的水化学特征进行分析,初步判断矿井水来源于奥灰含水层和三灰含水层,并确定Na^(+)+K^(+)浓度、Ca^(2+)浓度、Mg^(2+)浓度、HCO_(3)^(-)浓度、SO_(4)^(2-)浓度、Cl^(-)浓度、矿化度、总硬度、pH值作为突水水源识别指标;建立基于改进SSA-BP神经网络的矿井突水水源识别模型:首先进行SSA参数设置,引入Sine混沌映射使麻雀种群均匀分布,然后通过计算适应度值进行麻雀种群的更新,引入随机游走策略扰动当前最优个体,如果满足终止条件,则获得最优BP神经网络权重和阈值,最后基于构建的BP神经网络,输出识别结果。研究结果表明:①改进的SSA-BP模型在训练集上的识别准确率达95.6%,在测试集上的识别准确率达100%。②改进的SSA-BP神经网络模型与BP神经网络模型、SSA-BP神经网络模型对比结果:BP神经网络模型误判率为5/18,SSA-BP神经网络模型的误判率为2/18,改进的SSA-BP神经网络模型误判率为0,迭代10次后趋于稳定,且与设定的目标误差相差最小,初始适应度值最优,识别结果可信度高。③将阳城煤矿5组矿井水水样数据作为输入层数据输入到训练好的模型中,矿井水水样的主要来源为奥灰含水层、三灰含水层和山西组含水层,模型识别结果与水化学特征分析的结论相互印证,实现了精准区分。 展开更多
关键词 矿井突水水源识别 水化学特征 麻雀搜索算法 BP神经网络 混沌映射 随机游走策略
下载PDF
混合策略改进的野马优化算法 被引量:1
14
作者 李姗鸿 靳储蔚 +1 位作者 张达敏 张琳娜 《计算机工程与设计》 北大核心 2024年第2期405-413,共9页
针对野马优化算法存在种群多样性低、收敛速度慢和易陷入局部最优等问题,提出一种混合策略改进的野马优化算法(IWHO)。在马驹位置公式中引入基于饥饿游戏的Tent惯性权重,更好平衡算法的全局搜索与局部搜索能力;在放牧阶段引入折射镜像... 针对野马优化算法存在种群多样性低、收敛速度慢和易陷入局部最优等问题,提出一种混合策略改进的野马优化算法(IWHO)。在马驹位置公式中引入基于饥饿游戏的Tent惯性权重,更好平衡算法的全局搜索与局部搜索能力;在放牧阶段引入折射镜像学习策略,利用折射镜像学习生成可行解的反向解,加快算法的求解速度;利用混合黄金正弦与飞蛾扑火算子,使算法跳出局部最优。将改进后的算法(IWHO)和其它算法在10个基准函数上对比测试,并通过Wilcoxon秩和检验和拉/压弹簧设计问题验证算法性能。仿真结果表明,IWHO在收敛速度和寻优精度上有明显改进。 展开更多
关键词 野马优化算法 饥饿游戏搜索算法 混沌映射 惯性权重 折射镜像学习 函数优化 收敛曲线
下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
15
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
下载PDF
基于ISSA-LSTM模型的可再生能源电力需求预测
16
作者 闫晓霞 刘娴 《西安科技大学学报》 CAS 北大核心 2024年第3期604-614,共11页
为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LS... 为了更精准地预测未来能源结构调整方向及成效,选用ISSA-LSTM组合预测模型对中国2023-2030年可再生能源的电力需求进行预测。首先,利用Circle混沌映射改进麻雀搜索算法(SSA)以提高搜索能力以及种群多样性;然后引入长短期记忆神经网络(LSTM)以有效捕捉可再生能源电力需求随机波动性和时序性;最后,通过ISSA-LSTM模型预测长期可再生能源的电力需求,验证测试集数据,并与其他传统模型进行对比。结果表明:ISSA-LSTM模型预测结果能够满足对可再生能源电力需求预测的精度要求;在未来2023-2030年可再生能源电力需求稳定,波动幅度不大,可达到全国用电量的1/3;利用Circle混沌映射改进策略能有效提升SSA寻优能力。与PSO算法相比,SSA算法寻找LSTM超参数最优解的能力更优,ISSA-LSTM模型预测可再生能源电力需求精度更高。 展开更多
关键词 混合预测模型 麻雀搜索算法 长短期记忆网络 Circle混沌映射 电力需求预测
下载PDF
Neural network based on adaptive chaotic gradient descending optimization algorithm and its application in matte converting process 被引量:3
17
作者 胡志坤 彭小奇 桂卫华 《Journal of Central South University of Technology》 EI 2004年第2期216-219,共4页
An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method.... An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method. A new optimal minimum was obtained to replace the local minimum by mutative-scale chaotic search algorithm whose scales are magnified gradually from a small scale in order to escape local minima. The global optimal value was attained by repeatedly iterating. At last, a BP (back-propagation) neural network model for forecasting slag output in matte converting was established. The algorithm was used to train the weights of the BP neural network model. The simulation results with a training data set of 400 samples show that the training process can be finished within 300 steps to obtain the global optimal value, and escape local minima effectively. An optimization system for operation parameters, which includes the forecasting model, is achieved, in which the output of converter increases by 6.0%, and the amount of the treated cool materials rises by 7.8% in the matte converting process. 展开更多
关键词 matte converting chaotic search gradient descending neural network
下载PDF
考虑碳交易机制的海港综合能源系统电-热混合储能优化配置 被引量:1
18
作者 林森 文书礼 +4 位作者 朱淼 戴群 鄢伦 赵耀 叶惠丽 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第9期1344-1356,共13页
随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建... 随着港口电气化进程逐渐加速,单一的港口供能方式正在向多种能源深度融合演变.为响应我国“碳达峰、碳中和”战略目标,进一步提升海港综合能源系统的经济与环境双重效益,提出一种考虑碳交易机制的电-热混合式储能优化配置方案.首先,建立海港综合能源系统模型,并给出计及碳交易市场的交易方案;其次,构建双层优化配置框架,上层优化配置混合式储能容量,下层引入碳交易机制,满足港口综合能源系统低碳经济运行需求;最后,结合网格自适应直接搜索法与自适应混沌粒子群算法优势,利用混合式优化算法对双层优化模型进行求解.以天津港的实际运行数据为例,验证该方法的有效性.算例结果表明,所提方法不仅可以降低系统的投入成本,还能显著减少港区碳排放,从而进一步提升港口经济和环境效益. 展开更多
关键词 海港综合能源系统 碳交易机制 混合储能 网格自适应直接搜索算法 自适应混沌粒子群算法
下载PDF
全粒子推动野马优化算法的无人机三维路径规划 被引量:1
19
作者 李高扬 黎向锋 +3 位作者 赵康 金玉超 易志东 左敦稳 《系统仿真学报》 CAS CSCD 北大核心 2024年第3期595-607,共13页
针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯... 针对无人机路径规划求解计算量大、难收敛等问题,提出了一种基于全粒子推动野马算法的路径规划方法。建立三维环境模型与路径代价模型,将路径规划问题转化为多维函数优化问题;采用一种自适应邻域搜索策略,改善算法的开发能力;利用高斯随机游走策略对个体的历史最优位置进行回溯搜索,改善算法的探索能力;考虑到自适应策略对初始种群多样性敏感的问题,结合Tent混沌映射初始化种群,提高算法的鲁棒性以及全局寻优能力;将提出的改进算法在13个经典测试函数中进行性能验证,并移植于无人机三维路径规划问题中。在30峰、40峰、50峰的环境模型下进行测试,与遗传算法、粒子群算法、SRM-PSO(self-regulating and self-perception particle swarm optimization with mutation mechanism)算法以及野马算法对比,全粒子推动野马算法皆取得最短平均路径,且在所有测试中都找到满足约束、无碰的路径。仿真结果证明,在复杂环境下全粒子推动野马算法具有优秀的全局寻优能力以及较好的鲁棒性。 展开更多
关键词 野马算法 自适应邻域搜索 高斯随机游走 Tent混沌映射 无人机路径规划 全粒子推动
原文传递
混合多项自适应权重的混沌麻雀搜索算法 被引量:4
20
作者 杜云 周志奇 +2 位作者 贾科进 丁力 卢孟杨林 《计算机工程与应用》 CSCD 北大核心 2024年第7期70-83,共14页
麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提... 麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提高发现者的全局搜索能力和搜索范围;在加入者引入改进鲸鱼优化算法的气泡网捕食策略,提高算法的局部搜索性能和跳出局部最优的能力;结合反向学习策略机制,对所有的个体进行最优选择,使每次迭代后的个体质量得到提升,以提高算法的寻优效率和寻优精度。将混合多项自适应权重的混沌麻雀搜索算法与4种经典基本算法和9种改进的麻雀搜索算法在12种测试函数和CEC2022测试函数上进行对比,改进算法有更好的寻优性能和收敛速度。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 自适应权重 鲸鱼优化算法 反向学习
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部