Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (...Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.展开更多
Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS dat...Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS database software with a user-friendly and intuitive interface is developed based on Windows, consisting of a database module and a sample identification module. The database module includes a basic database containing LIBS persistent lines for elements and a dedicated geological database containing LIBS emission lines for several rock and soil reference standards. The module allows easy use of the data. A sample identification module based on partial least squares discriminant analysis (PLS-DA) or support vector machine (SVM) algorithms enables users to classify groups of unknown spectra. The developed system was used to classify rock and soil data sets in a dedicated database and the results demonstrate that the system is capable of fast and accurate classification of rocks and soils, and is thus useful for the detection of geological materials.展开更多
基金supported by the National Natural Science Foundation of China(6100118741001256+1 种基金40971219)the National High Technology Research and Development Program of China(863 Program)(2013 AA122301)
文摘Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.
基金supported by National Major Scientific Instruments and Equipment Development Special Funds,China(No.2011YQ030113)
文摘Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS database software with a user-friendly and intuitive interface is developed based on Windows, consisting of a database module and a sample identification module. The database module includes a basic database containing LIBS persistent lines for elements and a dedicated geological database containing LIBS emission lines for several rock and soil reference standards. The module allows easy use of the data. A sample identification module based on partial least squares discriminant analysis (PLS-DA) or support vector machine (SVM) algorithms enables users to classify groups of unknown spectra. The developed system was used to classify rock and soil data sets in a dedicated database and the results demonstrate that the system is capable of fast and accurate classification of rocks and soils, and is thus useful for the detection of geological materials.