期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
A bi-functional strategy involving surface coating and subsurface gradient co-doping for enhanced cycle stability of LiCoO_(2) at 4.6 V 被引量:1
1
作者 Yun He Xiaoliang Ding +7 位作者 Tao Cheng Hongyu Cheng Meng Liu Zhijie Feng Yijia Huang Menghan Ge Yingchun Lyu Bingkun Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期553-560,I0014,共9页
Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is... Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V. 展开更多
关键词 Lithium-ion batteries 4.6 V-LiCoO_(2) Surface modification Gradient co-doping Interfacial stability
下载PDF
Integration of pore structure modulation and B,N co-doping for enhanced capacitance deionization of biomass-derived carbon
2
作者 Yao Qiu Chunjie Zhang +7 位作者 Rui Zhang Zhiyuan Liu Huazeng Yang Shuai Qi Yongzhao Hou Guangwu Wen Jilei Liu Dong Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1488-1500,共13页
Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple ... Biomass-derived carbon has demonstrated great potentials as advanced electrode for capacitive deionization(CDI),owing to good electroconductivity,easy availability,intrinsic pores/channels.However,conventional simple pyrolysis of biomass always generates inadequate porosity with limited surface area.Moreover,biomass-derived carbon also suffers from poor wettability and single physical adsorption of ions,resulting in limited desalination performance.Herein,pore structure optimization and element co-doping are integrated on banana peels(BP)-derived carbon to construct hierarchically porous and B,N co-doped carbon with large ions-accessible surface area.A unique expansionactivation(EA)strategy is proposed to modulate the porosity and specific surface area of carbon.Furthermore,B,N co-doping could increase the ions-accessible sites with improved hydrophilicity,and promote ions adsorption.Benefitting from the synergistic effect of hierarchical porosity and B,N co-doping,the resultant electrode manifest enhanced CDI performance for NaCl with large desalination capacity(29.5 mg g^(-1)),high salt adsorption rate(6.2 mg g^(-1)min^(-1)),and versatile adsorption ability for other salts.Density functional theory reveals the enhanced deionization mechanism by pore and B,N co-doping.This work proposes a facile EA strategy for pore structure modulation of biomass-derived carbon,and demonstrates great potentials of integrating pore and heteroatoms-doping on constructing high-performance CDI electrode. 展开更多
关键词 Capacitive deionization Biomass-derived carbon Pore structure B N co-doping Desalination performance
下载PDF
Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode 被引量:4
3
作者 Honghui Bi Xiaojun He +3 位作者 Lei Yang Hongqiang Li Biyu Jin Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期195-204,I0007,共11页
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi... Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering. 展开更多
关键词 3D Carbon nanocapsules N/S co-doping Carbon anode Potassium-ion battery
下载PDF
Interior and Exterior Decoration of Transition Metal Oxide Through Cu^(0)/Cu^(+) Co-Doping Strategy for High-Performance Supercapacitor 被引量:3
4
作者 Weifeng Liu Zhi Zhang +4 位作者 Yanan Zhang Yifan Zheng Nishuang Liu Jun Su Yihua Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期96-109,共14页
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ... Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials. 展开更多
关键词 Cu^(0)/Cu^(+)co-doping HETEROSTRUCTURE Transition metal oxide SUPERCAPACITOR
下载PDF
Boosting electrocatalytic activity for CO_(2) reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus 被引量:2
5
作者 Shuo Chen Tianfu Liu +4 位作者 Samson O.Olanrele Zan Lian Chaowei Si Zhimin Chen Bo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期143-150,共8页
Electrochemical reduction of CO_(2)(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and s... Electrochemical reduction of CO_(2)(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application.On the other hand,doped carbon materials recently demonstrate superior catalytic performance in CERR,which shows the potential to diminish the problems of metal catalysts to some extent.Herein,we present the design and fabrication of nitrogen(N),phosphorus(P)co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO_(2) to CO,which exhibits an excellent performance with a high faradaic efficiency of 92%(-0.55 V vs.RHE)and up to 24 h stability.A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix.Moreover,the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance.The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants,which effectively modulate properties of the active site.The density functional theory(DFT)calculations were also performed to understand the synergy effects of dopants.It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH^(*)formation.Moreover,the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level.These changes can greatly enhance the activity of the catalysts.From a combined experimental and computational exploration,current work provides valuable insights into the reaction mechanism of CERR on N,P co-doped carbon catalysts,and the influence from synergy effects between dopants,which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction. 展开更多
关键词 Metal-free catalyst CO_(2)reduction co-doping DFT
下载PDF
Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
6
作者 黄渊超 王蓉 +3 位作者 钱怡潇 张懿强 杨德仁 皮孝东 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期512-517,共6页
The p-type doping efficiency of 4 H silicon carbide(4 H-SiC)is rather low due to the large ionization energies of p-type dopants.Such an issue impedes the exploration of the full advantage of 4 H-SiC for semiconductor... The p-type doping efficiency of 4 H silicon carbide(4 H-SiC)is rather low due to the large ionization energies of p-type dopants.Such an issue impedes the exploration of the full advantage of 4 H-SiC for semiconductor devices.In this study,we show that co-doping group-IVB elements effectively decreases the ionization energy of the most widely used p-type dopant,i.e.,aluminum(Al),through the defect-level repulsion between the energy levels of group-IVB elements and that of Al in 4 H-SiC.Among group-IVB elements Ti has the most prominent effectiveness.Ti decreases the ionization energy of Al by nearly 50%,leading to a value as low as~0.13 eV.As a result,the ionization rate of Al with Ti co-doping is up to~5 times larger than that without co-doping at room temperature when the doping concentration is up to 10^(18)cm^(-3).This work may encourage the experimental co-doping of group-IVB elements such as Ti and Al to significantly improve the p-type doping efficiency of 4 H-SiC. 展开更多
关键词 4H-SIC P-TYPE co-doping ab initio study
原文传递
Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability
7
作者 Huawei Zhu Haifeng Yu +2 位作者 Zhaofeng Yang Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期144-151,共8页
The Ni-ultrahigh cathode material is one of the best choices for further increasing energy-density of lithium-ion batteries(LIBs),but they generally suffer from the poor structure stability and rapid capacity fade.Her... The Ni-ultrahigh cathode material is one of the best choices for further increasing energy-density of lithium-ion batteries(LIBs),but they generally suffer from the poor structure stability and rapid capacity fade.Herein,the tungsten and phosphate polyanion co-doped LiNi_(0.9)Co_(0.1)O_(2)cathode materials are successfully fabricated in terms of Li(Ni_(0.9)Co_(0.7))_(1-x)W_(x)O_(2-4y)(PO_(4))_(y) by the precursor modification and subsequent annealing.The higher bonding energy of W—O(672 kJ·mol^(-1))can extremely stabilize the lattice oxygen of Ni-rich oxides compared with Ni—O(391.6 kJ·mol^(-1))and Co—O(368 kJ·mol^(-1)).Meanwhile,the stronger bonding of Ni—(PO_(4)^(3-))vs.Ni—O could fix Ni cations in the transition metal layer,and hence suppressing the Li/Ni disorder during the charge/discharge process.Therefore,the optimized Li(Ni_(0.9)Co_(0.1))_(0.99)W_(0.01)O_(1.96)(PO_4)_(0.01)delivers a remarkably extended cycling life with 95.1%retention of its initial capacity of 207.4 mA·h·g^(-1)at 0.2 C after 200 cycles.Meantime,the heteroatoms doping does not sacrifice the specific capacity even at different rates. 展开更多
关键词 LiNi_(0.9)Co_(0.1)O_(2) co-doping Crystal stability Cycling life Li-ion batteries
下载PDF
Efficiently enhanced energy storage performance of Ba_(2)Bi_(4)Ti_(5)O_(18) film by co-doping Fe^(3+)and Ta^(5+)ion with larger radius
8
作者 吴琼 赵雷 +1 位作者 陈兴豪 赵世峰 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期540-546,共7页
We present an efficient strategy,that is the co-substitution of Fe^(3+)and Ta^(5+)ions with large radius for Ti^(4+)ion,to enhance energy storage performance of Ba_(2)Bi_(4)Ti_(5)O_(18) film.For the films co-doped wit... We present an efficient strategy,that is the co-substitution of Fe^(3+)and Ta^(5+)ions with large radius for Ti^(4+)ion,to enhance energy storage performance of Ba_(2)Bi_(4)Ti_(5)O_(18) film.For the films co-doped with Fe^(3+)and Ta^(5+)ions,the maximum polarization under the same external electric field is improved because the radius of Fe^(3+)and Ta^(5+)ions is larger than that of Ti^(4+)ion.Moreover,due to the composition and chemical disorder,the relaxor properties are also slightly improved,which can not be achieved by the film doped with Fe^(3+)ions only.What is more,for the films doped with Fe^(3+)ion only,the leakage current density increases greatly due to the charge imbalance,resulting in a significant decrease in breakdown strength.It is worth mentioning that the breakdown strength of Fe^(3+)and Ta^(5+)ions co-doped film does not decrease due to the charge balance.Another important point is the recoverable energy storage density of the films co-doped with Fe^(3+)and Ta^(5+)ions has been greatly improved based on the fact that the maximum external electric field does not decrease and the maximum polarization under the same external electric field increases.On top of that,the hysteresis of the polarization has also been improved.Finally,the co-doped films with Fe^(3+)and Ta^(5+)ions have good frequency and temperature stability. 展开更多
关键词 Ba_(2)Bi_(4)Ti_(5)O_(18)film ferroelectrics energy storage co-doped RADIUS
原文传递
MnO_(2) nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries
9
作者 Xiaoqiang Liu Qian Zhang +6 位作者 Yiru Ma Zhenzhen Chi Huixiang Yin Jie Liu Junfei Huang Ziyang Guo Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期270-281,I0008,共13页
Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dend... Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices. 展开更多
关键词 N P co-doped carbon nanofibers on carbon cloth MnO_(2)nanosheet coating Molten-infusion method Li metal anodes Li metal batteries
下载PDF
Enhancement of terbium efficiency by gallium and copper co-doping in(Pr,Nd)-Fe-B sintered magnets
10
作者 Qingfang Huang Qingzheng Jiang +7 位作者 Yao Shi Sajjad Ur Rehman Xing Wei Ruoshu Wang Yongjian Zhang Deqin Xu Dakun Chen Zhenchen Zhong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第4期572-577,共6页
It is well known that Tb substitution for(Pr,Nd)in(Pr,Nd)-Fe-B based sintered magnetic materials is an effective way to increase intrinsic coercivity,but it is not quite clear whether the increment depends on the diff... It is well known that Tb substitution for(Pr,Nd)in(Pr,Nd)-Fe-B based sintered magnetic materials is an effective way to increase intrinsic coercivity,but it is not quite clear whether the increment depends on the different matrix phases with various doping ingredient or not,which is essential to develop high quality magnets with high coercivity more efficiently and effectively with economic consumption of expensive Tb and other costly heavy rare earths.In this paper,we investigated the efficiency of Tb substitution for magnetic property in(Pr,Nd)-Fe-B sintered permanent magnets by co-doping Ga and Cu elements.It is shown that Ga and Cu co-doping can effectively improve the efficiency of Tb substitution to increase the thermal stability and the coercivity.The intrinsic coercivity increases up to 549 and 987 kA/m respectively by 1.5 wt%and 3.0 wt%Tb substitution in Ga and Cu co-doped magnets while the intrinsic coercivity increases up to only 334 and 613 kA/m respectively by the same amounts of Tb substitution in non-Ga and low-Cu magnets.In other words,it demonstrates that there is about 329-366 kA/m linear equivalent enhancement of intrinsic coercivity by 1.0 wt%Tb substitution for(Pr,Nd)in Ga and Cu co-doped magnets.The temperature coefficients of both intrinsic coercivityβand remanenceαat 20-150℃by 3.0 wt%Tb substitution for the magnets with Ga and Cu co-doping are-0.47%/K and-0.109%/K respectively,and in contrast those values are-0.52%/K and 0.116%/K respectively for the non-Ga and low-Cu magnets.It is the principal reason for more efficient enhancement of magnetic property by Tb substitution in the Ga and Cu co-doped magnets in which Tb atoms are expelled from triple junction phases(TJPs)to penetrate into the grain boundary phases(GB phases)and thus modify the grain boundary.It is prospected that the efficiency of Tb substitution would rely on different matrix phases with various doping constituents. 展开更多
关键词 (Pr Nd)-Fe-B magnet Magnetic properties Microstructure Efficiency of Tb substitution Ga and Cu co-doping Rare earths
原文传递
Enhanced activity of ZnS(111) by N/Cu co-doping:Accelerated degradation of organic pollutants under visible light
11
作者 Guofei Jiang Benjie Zhu +3 位作者 Junzhi Sun Fang Liu Yongqiang Wang Chaocheng Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期244-257,共14页
High-efficiency photocatalysts are of great significance for the application of photocatalytic technology in water treatment.In this study,N/Cu co-doped ZnS nanosphere photocatalys(N/Cu-ZnS) is synthesized by a hydrot... High-efficiency photocatalysts are of great significance for the application of photocatalytic technology in water treatment.In this study,N/Cu co-doped ZnS nanosphere photocatalys(N/Cu-ZnS) is synthesized by a hydrothermal method for the first time.After doping,the tex ture of nanosphere becomes loose,the nanometer diameter is reduced,making the specific surface area of catalyst increased from 34.73 to 101.59 m^(2)/g.The characterization results show that more ZnS (111) crystal planes are exposed by N/Cu co-doping;the calculations of density functional theory show that N/Cu co-doping can increase the catalytic activity of the ZnS (111) crystal plane,enhance the adsorption capacity of (111) crystal plane to O_(2)and promote the generation of·O_(2)-.The energy levels of the introduced impurities can be hybridized with the energy levels of S and Zn at the top of valence band and the bottom o conduction band,which makes the band gap narrower,thus enhancing the absorption o visible light.Compared with pure ZnS,the degradation rates of 2,4-dichlorophenol (2,4-DCP and tetracycline (TC) by N/Cu-ZnS under visible light (>420 nm) are increased by 83.7 and51 times,respectively.In this research,a promising photocatalyst for photocatalytic degra dation of organic pollutants in wastewater is provided. 展开更多
关键词 Catalytic degradation of visible light N/Cu co-doping ZnS(111) 2 4-DICHLOROPHENOL TETRACYCLINE
原文传递
Co-doping strategy enhanced the ionic conductivity and excellent lithium stability of garnet-type Li_(7)La_(3)Zr_(2)O_(12)electrolyte in all solidstate lithium batteries
12
作者 Ziqiang Xu Xin Hu +6 位作者 Bowen Fu Kashif Khan Jintian Wu Teng Li Haiping Zhou Zixuan Fang Mengqiang Wu 《Journal of Materiomics》 SCIE CSCD 2023年第4期651-660,共10页
Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)is one of the most promising solid-state electrolytes(SSEs).However,the application of LLZO is limited by structural instability,low ionic conductivity,and poor lithium stabil... Garnet-type Li_(7)La_(3)Zr_(2)O_(12)(LLZO)is one of the most promising solid-state electrolytes(SSEs).However,the application of LLZO is limited by structural instability,low ionic conductivity,and poor lithium stability.To obtain a garnet-type solid electrolyte with a stable structure and high ionic conductivity,a series of TaeCe co-doping cubic Li_(6.4)La_(3)Zr_(1.4-x)Ta_(0.6)Ce_(x)O_(12)(LLZTCO,x=,0.02,0.04,0.06,0.08,0.10,0.20,0.30)electrolytes were successfully synthesized through conventional solid-phase method.The Ta^(5+)doping can introduce more lithium vacancies and effectively maintain the stability of the cubic phase.The Ce^(4+)with a larger ionic radius is introduced into the lattice to widen the Lit migration bottleneck size,which significantly increased the ionic conductivity to 1.05×10^(-3)S/cm.It also shows excellent stability to lithium metal by the optimization of Lit transport channel.Li||LLZTCO||Li symmetric cells can cycle stably for more than 6000 h at a current density of 0.1 mA/cm^(2)without any surface modifications.The commercialization potential of LLZTCO samples in all solid-state lithium batteries(ASSLBs)is confirmed by the prepared LiFePO_(4)||LLZTCO||Li cells with a capacity retention rate of 98%after 100 cycles at 0.5C.This new co-doping method presents a practical solution for the realization of high-performance ASSLBs. 展开更多
关键词 Solid-state electrolytes Garnet-type co-doping Bottleneck size Ionic conductivity Lithium stability
原文传递
Dual-site lattice co-doping strategy regulated crystal-structure and microstructure for enhanced cycling stability of Co-free Ni-rich layered cathode
13
作者 Lei Liu Yan Zhao +6 位作者 Guanghui Jiang Liang Shan Zelong Yang Yaoqiang Ma Yingjie Zhang Qi Meng Peng Dong 《Nano Research》 SCIE EI CSCD 2023年第7期9250-9258,共9页
Affected by cobalt(Co)supply bottlenecks and high costs,Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries(LIBs).Low-cost LiNi... Affected by cobalt(Co)supply bottlenecks and high costs,Co-free Ni-rich layered cathodes are considered the most promising option for economical and sustainable development of lithium-ion batteries(LIBs).Low-cost LiNi_(x)Al_(1-x)O_(2)(x≥0.9)cathode are rarely reported due to their chemo-mechanical instabilities and poor cycle life.Herein,we employ a strategy of Mg/W Li/Ni dualsite co-doping LiNi_(0.9)Al_(0.1)O_(2)(named as LNA90)cathodes to enhance cycling stability by modifying the crystal structure and forming a center radially aligned microstructure.The Mg/W co-doped LiNi_(0.9)Al_(0.1)O_(2)cathode(named as LNAMW)exhibits high capacity retention of 94.9%at 1 C and 3.0-4.5 V after 100 cycles with 22.0%increase over the pristine cathode LNA90 and maintains the intact particle morphology.Meanwhile,the cycling performance of LNAMW cathode exceeds that of most reported Ni-rich cathodes(Ni mol%>80%).Our work offers a straightforward,efficient,and scalable strategy for the future design of Cofree Ni-rich cathodes to facilitate the development of economical lithium-ion batteries. 展开更多
关键词 Co-free Ni-rich cathode dual-site co-doping microstructure LiNi_(0.9)Al_(0.1)O_(2) lithium-ion batteries
原文传递
Effects of two strategies on afterglow behavior of Lu_(2)O_(3):Eu single crystal scintillator:Co-doping with Pr^(3+)and solid solution with Sc_(2)O_(3)
14
作者 Zhongjun Xue Dongzhou Ding +4 位作者 Yating Sima Zuyao Zhou Hanrui Dong Shuwen Zhao He Feng 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第5期658-665,I0001,共9页
In this paper,effect of two strategies on afterglow behavior of Lu_(2)O_(3):Eu single crystal scintillato r,Pr^(3+)codoping and solid solution with Sc_(2)O_(3),were studied systematically.Two groups of Lu_(2)O_(3):5 a... In this paper,effect of two strategies on afterglow behavior of Lu_(2)O_(3):Eu single crystal scintillato r,Pr^(3+)codoping and solid solution with Sc_(2)O_(3),were studied systematically.Two groups of Lu_(2)O_(3):5 at%Eu,x at%Pr(x=0,0.2,0.5,1,2 and 5)and(Lu1-yScy)_(2)O_(3):5 at%Eu(y=0,20 at%,50 at%and 70 at%)single crystals were grown by floating zone(FZ)method in air atmosphere.The structures of as-grown crystals were determined by X-ray diffraction(XRD).The scintillation,photoluminescence properties and carrier trap states were investigated through afterglow,X-ray excitation luminescence(XEL),transmittance,photoluminescence excitation(PLE)and photoluminescence(PL),PL decay and thermal stimulated luminescence(TSL)curves.It is found that with the increase of Pr^(3+)concentration,the afterglow level of the system decreases at the expense of scintillation luminescence efficiency.Meanwhile,although Sc_(2)O_(3):Eu presents much lower afterglow intensity than Lu_(2)O_(3):Eu,the addition of Sc_(2)O_(3)will just increase the afterglow level of the(Lu1-yScy)_(2)O_(3):5 at%Eu single crystal system.Possible mechanisms for above phenomena are discussed based on experimental results. 展开更多
关键词 Lu_(2)O_(3):Eu Afterglow behavior Pr3+co-doping (Lu1-yScy)_(2)O_(3)solid solution Rare earths
原文传递
Electrical property enhancement and lattice thermal conductivity reduction of n-type Mg_(3)Sb_(1.5)Bi_(0.5)-based Zintl compound by In&Se co-doping
15
作者 Tong Liu Jiansong Liao +8 位作者 Hang Liu Runyu Wang Guocai Yuan Jing Jiang Yi Niu Xiaobo Lei Lihong Huang Chao Wang Qinyong Zhang 《Journal of Materiomics》 SCIE CSCD 2023年第3期431-437,共7页
Mg_(3)Sb_(1.5)Bi_(0.5)-based Zintl compounds have attracted extensive attention as potential thermoelectric materials due to their earth-abundant elements.However,pure and intrinsic Mg_(3)Sb_(1.5)Bi_(0.5)manifests a p... Mg_(3)Sb_(1.5)Bi_(0.5)-based Zintl compounds have attracted extensive attention as potential thermoelectric materials due to their earth-abundant elements.However,pure and intrinsic Mg_(3)Sb_(1.5)Bi_(0.5)manifests a poor thermoelectric performance because of its low electrical conductivity of about 3×10^(2)S/m at room temperature.In this work,In and Se co-doping was carried out to optimize the thermoelectric perfor-mance of n-type Mg_(3)Sb_(1.5)Bi_(0.5)-based material.The experimental results revealed that the carrier con-centration and mobility of Mg_(3)Sb_(1.5)Bi_(0.5)significantly increased after In and Se co-doping,leading to an improvement of power factor.Simultaneously,lattice thermal conductivity was significantly reduced due to the large mass difference between In and Mg.A maximum zT of 1.64 at 723 K was obtained for the Mg_(3.17)In_(0.03)Sb_(1.5)Bi_(0.49)Se_(0.01)sample.And an average zT value of about 1.1 between 300 and 723 K was achieved,which insures its possible application at medium temperature range as a non-toxic and low-cost TE material. 展开更多
关键词 Zintl compound Thermoelectric property n-type Mg_(3)Sb_(1.5)Bi_(0.5) In&Se co-doping
原文传递
Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors
16
作者 Dehui Yang Wentao Guo +6 位作者 Fei Guo Jiaming Zhu Gang Wang Hui Wang Guanghui Yuan Shenghua Ma Beibei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期652-664,I0014,共14页
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev... Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices. 展开更多
关键词 MoSeTe N F co-doped honeycomb carbon skeleton Sodium-ion batteries Sodium-ion hybrid capacitor
下载PDF
Thermoelectric properties of In-Hg co-doping in SnTe:Energy band engineering 被引量:3
17
作者 Xiaofang Tan Guoqiang Liu +6 位作者 Jingtao Xu Xiaojian Tan Hezhu Shao Haoyang Hu Haochuan Jiang Yalin Lu Jun Jiang 《Journal of Materiomics》 SCIE EI 2018年第1期62-67,共6页
Synergistic effect of band convergence and resonant level could be manipulated in SnTe by co-doping In and Hg,leading to a potential thermoelectric performance enhancement in a much wider temperature range.In this wor... Synergistic effect of band convergence and resonant level could be manipulated in SnTe by co-doping In and Hg,leading to a potential thermoelectric performance enhancement in a much wider temperature range.In this work we carefully investigated thermoelectric properties of the In-Hg co-doped SnTe,synthesized by a hot pressing method.With this co-doping the Seebeck coefficients of the co-doped samples were greatly improved(over 50 mVK^(-1))at the room temperature.Although power factors of the In-Hg co-doped SnTe were also able to be optimized,the peak ZT(0.9 at 850 K in Sn_(0.98)Bi_(0.02)Te-1%HgInTe_(2)),however,is not high enough when comparing to other co-doped SnTe systems.This may be caused by the relatively high lattice thermal conductivity.An apparent competition between band convergence doping and resonant level doping was observed in our experiment.The results suggest that band engineering via co-doping should be further understood in order to optimize the thermoelectric properties inside the material system. 展开更多
关键词 THERMOELECTRIC co-doping SnTe In-Hg
原文传递
Bi-functions of titanium and lanthanum co-doping to enhance theelectrochemical performance of spinel LiNi_(0.5)Mn_(1.5)O_(4)cathode 被引量:2
18
作者 Xueying Zheng Weijie Liu +2 位作者 Qunting Qu Honghe Zheng Yunhui Huang 《Journal of Materiomics》 SCIE EI 2019年第2期156-163,共8页
Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode material doped with Ti and La co-doping were synthesized through a solid-state method.The bi-functions of the Ti and La co-doping is realized.On the one hand,the stability o... Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode material doped with Ti and La co-doping were synthesized through a solid-state method.The bi-functions of the Ti and La co-doping is realized.On the one hand,the stability of the LiNi_(0.5)Mn_(1.5)O_(4)crystal structure is enhanced and the Mn3t interference inside the material is reduced by the Ti doping.On the other hand,the co-doped La contributes to the formation of Li_(0.5)La_(0.5)TiO_(3)(LLTO)superionic conductor incorporated in the bulk LiNi_(0.5)Mn_(1.5)O_(4)phase,thereby enhancing the Li diffusion.With the help of XRD,FTIR,SEM and STEM techniques,La and Ti in the crystallographic structure and the dispersion of the LLTO superionic conductor in the bulk LNMO spinel are discussed.At the optimized molar ratio of 20:1 between LNMO and LLTO,the composite exhibits the best electrochemical performances in terms of the reversible capacity,rate capability and cycling stability.The lithium ion diffusion coefficient in the bulk LNMO phase is tripled by the LLTO superionic conductor incorporation. 展开更多
关键词 Lithium ion batteries Spinel LiNi_(0.5)Mn_(1.5)O_(4) Li0.5La0.5TiO3 co-doping Superionic-conductor
原文传递
Bi and S Co-doping g-C_(3)N_(4)to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H_(2) Production 被引量:1
19
作者 Yan Hu Xibao Li +8 位作者 Weiwei Wang Fang Deng Lu Han Xiaoming Gao Zhijun Feng Zhi Chen Juntong Huang Fanyan Zeng Fan Dong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第6期69-78,共10页
By adjusting the type and proportion of doping elements in the g-C_(3)N_(4)-based photocatalyst,the internal electric field(IEF)strength of the semiconductor can be regulated.This can effectively enhance the driving f... By adjusting the type and proportion of doping elements in the g-C_(3)N_(4)-based photocatalyst,the internal electric field(IEF)strength of the semiconductor can be regulated.This can effectively enhance the driving force of charge separation in the photocatalytic process.It is found that the introduction of appropriate concentration of Bi and S into the skeleton structure of g-C_(3)N_(4)can achieve efficient degradation of tetracycline(TC)and other pollutants in the liquid environment and excellent photocatalytic H_(2)evolution performance(1139μmol·L^(-1)·h^(-1)).Since the prepared samples have similar crystal structures,the relative strength of IEF can be calculated.It can be used as the basis for adjusting the IEF strength of g-C_(3)N_(4)-based semiconductor by element doping.In addition,the Bi and S co-doped g-C_(3)N_(4)samples after solvothermal reflux show good chemical stability and can reduce the nanostructure defects caused by co-doping of heteroatoms,thus it provides a novel solution for the construction of g-C_(3)N_(4)-based dual-function photocatalyst with high activity and stability. 展开更多
关键词 PHOTOCATALYSIS g-C_(3)N_(4) co-doping IEF strength antibiotic
原文传递
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:1
20
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 S P co-doping NiSe_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部