Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and vali...Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.展开更多
On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in ...On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in the froth cyclone is a synthetic mineralizing process, of which the non collision mineralization of minute air bubble separated out dominates, supplemented with the collision mineralization. Moreover, this paper points out that the hydrophobic separated out and centrifugal force strengthen the selectivity of fine coal particle, accelerate the flotation speed and improve the slime recovery.展开更多
The Longxinggou Nappe which is located in Guangshui county, north of Hubei province, has been first identified by our detail mapping. It is composed of lowgrade metamorphosed rocks of middle Proterozoic Shuixian group...The Longxinggou Nappe which is located in Guangshui county, north of Hubei province, has been first identified by our detail mapping. It is composed of lowgrade metamorphosed rocks of middle Proterozoic Shuixian group, late Proterozoic Yaolinghe group, Sinian Liantuo,Doushantuo and Dengying formations. It is quite different from the lower beds, middle.Proterozoic Hong’an epidote-amphibole facies metamorphose metapelite and metagranite. They are different not only in composition, metamorphic degree, but also in deformation forms. The Longxinggou nappe has characteristics both of ductile thrusting and ductile dextral strike-sliping, illustrating a transpressive deformation regime of middle crustal in the orogenic belt due to the oblique collision, between the Shuiying terrain and the Tongbai terrain during Caledonian period.展开更多
As the Arctic Channel continues to be developed,collisions between polar navigation vessels and sea ice are inevitable,which will directly affect structural safety and vibration comfort.However,the numerical analysis ...As the Arctic Channel continues to be developed,collisions between polar navigation vessels and sea ice are inevitable,which will directly affect structural safety and vibration comfort.However,the numerical analysis method of ship-ice collision-induced vibration is not perfect,and the effect of fluid coupling is not typically considered.In this paper,a simplified numerical analysis method for ship-ice collision-induced vibration is proposed,in which a reliable ice load is obtained by first performing ship-ice-water-air coupled collision calculations,followed by ship-ice-water coupled vibration calculations to obtain the vibration response of the structure.In addition,this paper investigates the full coupling method and the modeling ranges and meshing sizes involved in the analysis ship-ice collision-induced vibration,and the computational efficiencies of the traditional ALE algorithm and S-ALE algorithm are compared.The results indicate that the simplified simulation analysis method and gradient meshing model improve the calculation accuracy and efficiency in ship-ice collision and vibration response analysis.Moreover,the modeling range of the water and air models cannot be less than 6 times the ship width,2 times the ship length,and 1 times the ship depth,and the S-ALE algorithm saves 47.86%time compared to the ALE algorithm.The research results in this paper can provide a reference for the numerical simulation of ship-ice collision-induced vibration.展开更多
With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural...With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural airspaces.It is of great significance to know the upper limit of the Reduced Separation Minima(RSM)for a procedural airspace and the corre-sponding consequences on collision risk with specifics of the advanced ADS-B and control interven-tion model.In this work,an interactive software is first developed for collision risk estimation.This software integrates the International Civil Aviation Organization(ICAO)collision risk models for lateral and longitudinal collision risk calculation for the Singapore procedural airspace.Results demonstrate that the lateral and longitudinal collision risk of Singapore procedural airspace with respect to current control procedures meets the ICAO Target Level of Safety(TLS)standard.Moreover,the feasibility of reducing the horizontal separations implemented in the Singapore pro-cedural airspace with respect to advanced CNS techniques is investigated.It is found that if advanced CNS technologies are applied,then the current 50-NM lateral and longitudinal separa-tion standards can be reduced to 22 NM(1 NM=1.825 km)and 20 NM,respectively,to meet the TLS standards based on current demand.A method is then devised to expand the traffic demand by p for p∈[10%,200%].It is found that the minimum lateral and longitudinal separa-tions can be reduced from 50 NM to be within the range of[23,31]NM,and 20 NM,respectively,for p∈[10%,200%],while the collision risk still meets the TLS standards.展开更多
A new safety assessment method for parallel routes is presented. From the aspects of safety guard system of air traffic control(ATC) and considering the flight conflict as causing event of air collision accidents, t...A new safety assessment method for parallel routes is presented. From the aspects of safety guard system of air traffic control(ATC) and considering the flight conflict as causing event of air collision accidents, this paper fosters a four-layer safety guard of controller command, short-term conflict alerts (STCAs), pilot visual avoidance, and traffic alert collision avoidance system(TCAS). Then, the problem of parallel routes collision risk is divided into two parts:the calculation of potential flight conflict and the analysis of failure probability of the four-layer safety guard. A calculation model for controller interference times is induced. By using cognitive reliability and error analysis method(CREAM),the calculation problem to failure probability of controller sequencing flight conflicts is solved and a fault tree model of guard failure of STCA and TCAS is established. Finally, the Beijing-Shanghai parallel routes are taken as an example to be calculated and the collision risk of the parallel routes is obtained under the condition of radar control. Results show that the parallel routes can satisfy the safety demands.展开更多
Recent years have witnessed a booming of the industry of civil Unmanned Aircraft System(UAS).As an emerging industry,the UAS industry has been attracting great attention from governments of all countries and the aviat...Recent years have witnessed a booming of the industry of civil Unmanned Aircraft System(UAS).As an emerging industry,the UAS industry has been attracting great attention from governments of all countries and the aviation industry.UAS are highly digitalized,informationized,and intelligent;therefore,their integration into the national airspace system has become an important trend in the development of civil aviation.However,the complexity of UAS operation poses great challenges to the traditional aviation regulatory system and technical means.How to prevent collisions between UASs and between UAS and manned aircraft to achieve safe and efficient operation in the integrated operating airspace has become a common challenge for industry and academia around the world.In recent years,the international community has carried out a great amount of work and experiments in the air traffic management of UAS and some of the key technologies.This paper attempts to make a review of the UAS separation management and key technologies in collision avoidance in the integrated airspace,mainly focusing on the current situation of UAS Traffic Management(UTM),safety separation standards,detection system,collision risk prediction,collision avoidance,safety risk assessment,etc.,as well as an analysis of the bottlenecks that the current researches encountered and their development trends,so as to provide some insights and references for further research in this regard.Finally,this paper makes a further summary of some of the research highlights and challenges.展开更多
Production of tachyons in, among other things, air showers would be in accordance with predictions of general relativity. Some such tachyons would travel with a precisely determined speed, almost equal to 5c/3 relativ...Production of tachyons in, among other things, air showers would be in accordance with predictions of general relativity. Some such tachyons would travel with a precisely determined speed, almost equal to 5c/3 relative to the earth, and would be registered high above the region of creation of air showers, e.g. on board of a satellite. A very simple experiment designed to detect these tachyons is outlined here. Brief justification to search for tachyons is also given.展开更多
基金supported by the National Key Basic Research Program of China(973 Program)2015CB251002National Natural Science Foundation of China under Grant 51521065,51577145+1 种基金the Fundamental Research Funds for the Central UniversitiesShaanxi Province Natural Science Foundation 2013JM-7010
文摘Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.
文摘On the basis of the mineralizing mechanism of froth cyclone, this paper expounds that the froth cyclone flotation process is accomplished in a limited centrifugal field. The main feature of air bubble mineralizing in the froth cyclone is a synthetic mineralizing process, of which the non collision mineralization of minute air bubble separated out dominates, supplemented with the collision mineralization. Moreover, this paper points out that the hydrophobic separated out and centrifugal force strengthen the selectivity of fine coal particle, accelerate the flotation speed and improve the slime recovery.
文摘The Longxinggou Nappe which is located in Guangshui county, north of Hubei province, has been first identified by our detail mapping. It is composed of lowgrade metamorphosed rocks of middle Proterozoic Shuixian group, late Proterozoic Yaolinghe group, Sinian Liantuo,Doushantuo and Dengying formations. It is quite different from the lower beds, middle.Proterozoic Hong’an epidote-amphibole facies metamorphose metapelite and metagranite. They are different not only in composition, metamorphic degree, but also in deformation forms. The Longxinggou nappe has characteristics both of ductile thrusting and ductile dextral strike-sliping, illustrating a transpressive deformation regime of middle crustal in the orogenic belt due to the oblique collision, between the Shuiying terrain and the Tongbai terrain during Caledonian period.
文摘As the Arctic Channel continues to be developed,collisions between polar navigation vessels and sea ice are inevitable,which will directly affect structural safety and vibration comfort.However,the numerical analysis method of ship-ice collision-induced vibration is not perfect,and the effect of fluid coupling is not typically considered.In this paper,a simplified numerical analysis method for ship-ice collision-induced vibration is proposed,in which a reliable ice load is obtained by first performing ship-ice-water-air coupled collision calculations,followed by ship-ice-water coupled vibration calculations to obtain the vibration response of the structure.In addition,this paper investigates the full coupling method and the modeling ranges and meshing sizes involved in the analysis ship-ice collision-induced vibration,and the computational efficiencies of the traditional ALE algorithm and S-ALE algorithm are compared.The results indicate that the simplified simulation analysis method and gradient meshing model improve the calculation accuracy and efficiency in ship-ice collision and vibration response analysis.Moreover,the modeling range of the water and air models cannot be less than 6 times the ship width,2 times the ship length,and 1 times the ship depth,and the S-ALE algorithm saves 47.86%time compared to the ALE algorithm.The research results in this paper can provide a reference for the numerical simulation of ship-ice collision-induced vibration.
文摘With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural airspaces.It is of great significance to know the upper limit of the Reduced Separation Minima(RSM)for a procedural airspace and the corre-sponding consequences on collision risk with specifics of the advanced ADS-B and control interven-tion model.In this work,an interactive software is first developed for collision risk estimation.This software integrates the International Civil Aviation Organization(ICAO)collision risk models for lateral and longitudinal collision risk calculation for the Singapore procedural airspace.Results demonstrate that the lateral and longitudinal collision risk of Singapore procedural airspace with respect to current control procedures meets the ICAO Target Level of Safety(TLS)standard.Moreover,the feasibility of reducing the horizontal separations implemented in the Singapore pro-cedural airspace with respect to advanced CNS techniques is investigated.It is found that if advanced CNS technologies are applied,then the current 50-NM lateral and longitudinal separa-tion standards can be reduced to 22 NM(1 NM=1.825 km)and 20 NM,respectively,to meet the TLS standards based on current demand.A method is then devised to expand the traffic demand by p for p∈[10%,200%].It is found that the minimum lateral and longitudinal separa-tions can be reduced from 50 NM to be within the range of[23,31]NM,and 20 NM,respectively,for p∈[10%,200%],while the collision risk still meets the TLS standards.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2006AA12A105)~~
文摘A new safety assessment method for parallel routes is presented. From the aspects of safety guard system of air traffic control(ATC) and considering the flight conflict as causing event of air collision accidents, this paper fosters a four-layer safety guard of controller command, short-term conflict alerts (STCAs), pilot visual avoidance, and traffic alert collision avoidance system(TCAS). Then, the problem of parallel routes collision risk is divided into two parts:the calculation of potential flight conflict and the analysis of failure probability of the four-layer safety guard. A calculation model for controller interference times is induced. By using cognitive reliability and error analysis method(CREAM),the calculation problem to failure probability of controller sequencing flight conflicts is solved and a fault tree model of guard failure of STCA and TCAS is established. Finally, the Beijing-Shanghai parallel routes are taken as an example to be calculated and the collision risk of the parallel routes is obtained under the condition of radar control. Results show that the parallel routes can satisfy the safety demands.
基金co-supported by the National Natural Science Foundation of China(Nos.U1933130,U1533119 and 71731001)the Major Project of Technological Innovation,China(No.2018AAA0100800)。
文摘Recent years have witnessed a booming of the industry of civil Unmanned Aircraft System(UAS).As an emerging industry,the UAS industry has been attracting great attention from governments of all countries and the aviation industry.UAS are highly digitalized,informationized,and intelligent;therefore,their integration into the national airspace system has become an important trend in the development of civil aviation.However,the complexity of UAS operation poses great challenges to the traditional aviation regulatory system and technical means.How to prevent collisions between UASs and between UAS and manned aircraft to achieve safe and efficient operation in the integrated operating airspace has become a common challenge for industry and academia around the world.In recent years,the international community has carried out a great amount of work and experiments in the air traffic management of UAS and some of the key technologies.This paper attempts to make a review of the UAS separation management and key technologies in collision avoidance in the integrated airspace,mainly focusing on the current situation of UAS Traffic Management(UTM),safety separation standards,detection system,collision risk prediction,collision avoidance,safety risk assessment,etc.,as well as an analysis of the bottlenecks that the current researches encountered and their development trends,so as to provide some insights and references for further research in this regard.Finally,this paper makes a further summary of some of the research highlights and challenges.
文摘Production of tachyons in, among other things, air showers would be in accordance with predictions of general relativity. Some such tachyons would travel with a precisely determined speed, almost equal to 5c/3 relative to the earth, and would be registered high above the region of creation of air showers, e.g. on board of a satellite. A very simple experiment designed to detect these tachyons is outlined here. Brief justification to search for tachyons is also given.