Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,...Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.展开更多
Due to the different lighting environments or other reasons, the pixel colors may be quite different in one image which causes distinct visual discontinuities. It makes the analysis and processing of such an image mor...Due to the different lighting environments or other reasons, the pixel colors may be quite different in one image which causes distinct visual discontinuities. It makes the analysis and processing of such an image more difficult and sometime impossible. In this paper, a unified multi-toning image adjustment method is proposed to solve this problem. First, a novel unsupervised clustering method was proposed to partition the source and the target image into a certain number of subsets with similar color statistics. By matching the texture characteristics and luminance distribution between the blocks, it can create optimized correspondence. Then, the color information was transferred from the matched pixels in the source blocks to the target ones. Graph cut method was used to optimize the seams between different subsets in the final step. This method can automatically perform color adjustment of a multi-toning image. It is simple and efficient. Various results show the validity of this method.展开更多
基金supported by the National Natural Science Foundation of China (51572034)the Jilin Province Science and Technology Development Plan Project of China (20220203168SF)。
文摘Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.
基金Supported by Natural Science Foundation of China (61170118 and 60803047), the Specialized Research Fund for the Doctoral Program of Higher Education of China (200800561045)
文摘Due to the different lighting environments or other reasons, the pixel colors may be quite different in one image which causes distinct visual discontinuities. It makes the analysis and processing of such an image more difficult and sometime impossible. In this paper, a unified multi-toning image adjustment method is proposed to solve this problem. First, a novel unsupervised clustering method was proposed to partition the source and the target image into a certain number of subsets with similar color statistics. By matching the texture characteristics and luminance distribution between the blocks, it can create optimized correspondence. Then, the color information was transferred from the matched pixels in the source blocks to the target ones. Graph cut method was used to optimize the seams between different subsets in the final step. This method can automatically perform color adjustment of a multi-toning image. It is simple and efficient. Various results show the validity of this method.