Over the last decade,perovskite solar cells(PSCs)have drawn extensive atten-tion owing to their high power conversion efficiency(single junction:26.1%,perovskite/silicon tandem:33.9%)and low fabrication cost.However,t...Over the last decade,perovskite solar cells(PSCs)have drawn extensive atten-tion owing to their high power conversion efficiency(single junction:26.1%,perovskite/silicon tandem:33.9%)and low fabrication cost.However,the short lifespan of PSCs with initial efficiency still blocks their practical applications.This operational instability may originate from the intrinsic and extrinsic deg-radation of materials or devices.Although the lifetime of PSCs has been prolonged through component,crystal,defect,interface,encapsulation engineering,and so on,the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable.In this review,we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors.Then the strategies for improving long-term durability with respect to fundamental materials,interface designs,and device encapsulation have been summarized.Meanwhile,the key results have been discussed to understand the limitation of assessing PSCs stability,and the potential applications in indoor photovoltaics and wearable electronics are demonstrated.Finally,promising proposals,encompassing material processing,film formation,interface strengthening,structure designing,and device encapsulation,are provided to improve the operational stability of PSCs and promote their commercialization.展开更多
Chitosan is a type of biopolymer that can be obtained from animal/marine sources,and it can also be extracted or produced from agriculture waste products like mushroom or different fungal sources after the chitin deac...Chitosan is a type of biopolymer that can be obtained from animal/marine sources,and it can also be extracted or produced from agriculture waste products like mushroom or different fungal sources after the chitin deacetylation.Depending on the size of mushroom farm,the amount of waste ranges between 5%and 20%of the production volume.The cell wall of the filamentous fungi,a good source of chitin,offers an easy way to extract chitin.The physicochemical character-istics such as molecular weight and degree of deacetylation of fungal chitosan can be controlled compared to chitosan obtained from crustacean sources.Fungal sourced chitosan can be used in food,pharmaceutical or biomedical applications for different applications,for example,as an antimicrobial agent,coating material,water purification or bio-pesticide.This review mainly fo-cused on the extraction of chitin from mushroom or different fungal sources and also showed some applications of commercial chitosan products.展开更多
Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resou...Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resources.Most of the current research has been focused on the half-cell system(using Na metal as the counter electrode)to evaluate the performance of the cathode/anode/electrolyte.The relationship between the performance achieved in half cells and that obtained in full cells,however,has been neglected in much of this research.Additionally,the trade-off in the relationship between electrochemical performance and cost needs to be given more consideration.Therefore,systematic and comprehensive insights into the research status and key issues for the full-cell system need to be gained to advance its commercialization.Consequently,this review evaluates the recent progress based on various cathodes and highlights the most significant challenges for full cells.Several strategies have also been proposed to enhance the electrochemical performance of NIBs,including designing electrode materials,optimizing electrolytes,sodium compensation,and so forth.Finally,perspectives and outlooks are provided to guide future research on sodium-ion full cells.展开更多
By means of selecting proper additives and optimizing catalyst composition and preparation procedures, a high-platinum and low coke deposition catalyst PS-Ⅶ for continuous catalytic reforming (CCR) without reducing...By means of selecting proper additives and optimizing catalyst composition and preparation procedures, a high-platinum and low coke deposition catalyst PS-Ⅶ for continuous catalytic reforming (CCR) without reducing its specific surface area has been successfully developed. This catalyst PS-Ⅶ was evaluated in a 100-mL pilot test unit. Study results showed that under the same reaction conditions the newly developed catalyst PS-Ⅶ achieved a 26% reduction in coke deposition as compared to the existing high-platinum CCR catalyst. This catalyst upon its first commercial application in a 1.39 Mt/a CCR unit had exhibited good anti-attrition performance and good stability in terms of its specific surface area. Compared to the original CCR catalyst this PS-Ⅶ type catalyst could reduce the coke deposition by 27.32% when operating on feedstock with low potential aromatic content, along with apparent increase in C6^+ liquid yield, hydrogen yield and aromatics yield, which could grapple with the problem associated with the catalyst regeneration constraints after CCR capacity expansion to ensure the longcycle high-load operation of the CCR unit.展开更多
The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different f...The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.展开更多
Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return th...Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return this "devil" to underground, and keep a peaceful environment for human? Scientists from all over the world have been exploring them.展开更多
The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized c...The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized catalyst grading system can reasonably distribute the reaction load, effectively improve the prop- erties of hydrotreated products, prolong the operating cycle and promote economic benefits.展开更多
The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through r...The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through regeneration. After long period of operation, the activity of said catalysts still exhibited good sensitivity to temperature rise. Compared with the PR series catalysts, the PRT series catalysts had obviously better stability and lower coking rate.展开更多
Edible mushrooms are considered as healthy food because they are low in calories and fat but rich in proteins minerals and dietary fiber(DF). Edible mushrooms are recognized as new potential resource of DF since the c...Edible mushrooms are considered as healthy food because they are low in calories and fat but rich in proteins minerals and dietary fiber(DF). Edible mushrooms are recognized as new potential resource of DF since the components of edible mushroom dietary fiber(EMDF) have shown special physiological and pharmacological effects on human and animals. In this article,the soluble and insoluble fractions of DF in different edible mushroom species have been evaluated. Biological effects of EMDF are related to promoting desired responses,for example,reducing blood cholesterol,protecting cells from free radicals attack by antioxidative effects,attenuating levels and fluctuations of blood glucose and selectively supporting the growth of beneficial gut bacteria. The EMDF plays an important role in reducing risk of cardiovascular diseases,diabetes mellitus and intestinal diseases. The non-starch polysaccharides(NSP),a kind of EMDF,is the best known and most potent mushroom-derived substances with antitumor and immunomodulatory properties. EMDF has also been reported to take part in the control of body weight,lipid homeostasis and insulin sensitivity due to its effect on specific chemical structures and physical properties. Many pharmaceutical substances with potent and unique health- enhancing properties were isolated recently from edible mushrooms and distributed worldwide. Mushroom-based dietary supplements(DSs) with potential therapeutic effects are produced from the mycelia or the fruiting bodies of mushrooms,and are consumed in the forms of capsules,tablets,or extracts. The EMDF, based on its special physiological functions on human health,shows a wide range of potential application prospects.展开更多
The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators r...The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.展开更多
The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technolo...The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.展开更多
A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional c...A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.展开更多
This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the...This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.展开更多
MGD technology effectively integrates selective cracking reaction of olefin fraction in FCC naphtha with the stepwise cracking of light and heavy feedstocks under different severity conditions for improving FCC gasoli...MGD technology effectively integrates selective cracking reaction of olefin fraction in FCC naphtha with the stepwise cracking of light and heavy feedstocks under different severity conditions for improving FCC gasoline quality and adjusting the product slate of FCC unit. The first commercial application of MGD technology in a 1.30 Mt/a FCCU using VGO as feedstock at Tianjin Petrochemical Company showed that the olefin content in FCC naphtha decreased around 10 percentage points (by volume) with slight increase in octane number. The yields of LPG and LCO increased around 4.63 and 2.04 percentage points respectively, and the ratio between LCO to naphtha increased by 0.21. Due to capacity constraints of FCCU, the capacity decreased slightly under the MGD operation mode.展开更多
This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent...This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent outcome for commercial application of the gasoline upgrading in the auxiliary reactor to reduce the olefin content in FCC naphtha. Application of this technology can reduce the olefin content in FCC naphtha to less than 35 v%. Adjustment of the FCC operation towards more severe conditions can further reduce the olefin content in FCC naphtha to less than 20 v%, so that the FCC naphtha can meet the current standard or meet more stringent specification requirements in the future to achieve compelling economic and social benefits.展开更多
The ZHC-01 hydrocracking catalyst, characterized by high hydrogenation activity, good selectivity for middle distillates, strong resistance to nitrogen poisoning, was prepared by co-gelling. The catalyst is not only s...The ZHC-01 hydrocracking catalyst, characterized by high hydrogenation activity, good selectivity for middle distillates, strong resistance to nitrogen poisoning, was prepared by co-gelling. The catalyst is not only suited to the single-stage hydrocracking process, but also to the first stage of serial hydrocracking process. In parallel with the fully loaded operation of the 1.4 Mt/a hydrocracking unit at the SINOPEC Qilu Petrochemical Company, a pilot test of the ZHC-01 catalyst was also carried out on the hydrocracking unit. The test results indicated that the activity, the yield of major target products and quality of the ZHC-01 catalyst could comply with the design requirements for the hydrocracking unit, and this catalyst could be applied in the hydrocracking unit. The commercial test results showed that the ZHC-01 catalyst, featuring good activity, stability, and flexibility in production, not only could meet the demand for producing environmentally friendly middle distillates, but could also increase the resource of optimized steam cracking feedstock.展开更多
This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tia...This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.展开更多
The wastewater discharged from the 1.0 Mt/a ethylene unit at Maoming Petrochemical Company was separated according to its quality, and a major part ofwastewater with better quality was properly treated via the process...The wastewater discharged from the 1.0 Mt/a ethylene unit at Maoming Petrochemical Company was separated according to its quality, and a major part ofwastewater with better quality was properly treated via the process of"IRABF + high-efficiency fiber filtering + disinfection" to make the wastewater quality comply with the quality of recycled cooling water, so that the technique for reused petrochemical wastewater was more reliable technically and more reasonable economically,展开更多
The commercial application of the decalcifying agent JCM-2004RPD at Khartoum Refinery Co. Ltd. is introduced in this article. This decalcifying agent has good effect for calcium removal. When the dosage of decalcifyin...The commercial application of the decalcifying agent JCM-2004RPD at Khartoum Refinery Co. Ltd. is introduced in this article. This decalcifying agent has good effect for calcium removal. When the dosage of decalcifying agent was 1600 ppm, the decalcification rate of the crude oil could reach more than 60%, while the ash content of petroleum coke was on specification and the coke quality could meet the 3B class quality standard. After decalcification, the average calcium content in crude oil leaving the desa/ter was 488 ppm, and the salt content in crude after desalting could be less than 3 mg NaCl/L, with the water content in crude after desalting being lower than 0.2%.展开更多
Commercial application of the DZC Ⅱ-I catalyst developed on the basis of the DZ-1 catalyst was introduced. The application tests of the catalyst under overload had proved that this catalyst demonstrated satisfactory ...Commercial application of the DZC Ⅱ-I catalyst developed on the basis of the DZ-1 catalyst was introduced. The application tests of the catalyst under overload had proved that this catalyst demonstrated satisfactory adaptability to feedstock after continued operation for 20 months with little changes in the bed pressure drop, the reactor inlet temperature and the bed temperature rise. The DZC Ⅱ- 1 catalyst was regarded as the best catalyst for the second-stage hydrogenation of pyrolvsis gasoline.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.22005131 and 52171369)Shanxi Scholarship Council of China(Grant No.2020-140)+1 种基金Natural Science Foundation of Jiangxi Province(Grant Nos.22005131 and 52171369)Shanxi Scholarship Council of China(Grant Nos.20212BAB214055 and 20224ACB204007).
文摘Over the last decade,perovskite solar cells(PSCs)have drawn extensive atten-tion owing to their high power conversion efficiency(single junction:26.1%,perovskite/silicon tandem:33.9%)and low fabrication cost.However,the short lifespan of PSCs with initial efficiency still blocks their practical applications.This operational instability may originate from the intrinsic and extrinsic deg-radation of materials or devices.Although the lifetime of PSCs has been prolonged through component,crystal,defect,interface,encapsulation engineering,and so on,the systematic analysis of failure regularity for PSCs from the perspective of materials and devices against multiple operating stressors is indispensable.In this review,we start with elaboration of the predominant degradation pathways and mechanism for PSCs under working stressors.Then the strategies for improving long-term durability with respect to fundamental materials,interface designs,and device encapsulation have been summarized.Meanwhile,the key results have been discussed to understand the limitation of assessing PSCs stability,and the potential applications in indoor photovoltaics and wearable electronics are demonstrated.Finally,promising proposals,encompassing material processing,film formation,interface strengthening,structure designing,and device encapsulation,are provided to improve the operational stability of PSCs and promote their commercialization.
基金This work was supported by the Mitacs Program and Canada Research Chairs Program of the Government of Canada.
文摘Chitosan is a type of biopolymer that can be obtained from animal/marine sources,and it can also be extracted or produced from agriculture waste products like mushroom or different fungal sources after the chitin deacetylation.Depending on the size of mushroom farm,the amount of waste ranges between 5%and 20%of the production volume.The cell wall of the filamentous fungi,a good source of chitin,offers an easy way to extract chitin.The physicochemical character-istics such as molecular weight and degree of deacetylation of fungal chitosan can be controlled compared to chitosan obtained from crustacean sources.Fungal sourced chitosan can be used in food,pharmaceutical or biomedical applications for different applications,for example,as an antimicrobial agent,coating material,water purification or bio-pesticide.This review mainly fo-cused on the extraction of chitin from mushroom or different fungal sources and also showed some applications of commercial chitosan products.
基金National Natural Science Foundation of China,Grant/Award Numbers:51971124,52102285,52171217,52250710680。
文摘Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resources.Most of the current research has been focused on the half-cell system(using Na metal as the counter electrode)to evaluate the performance of the cathode/anode/electrolyte.The relationship between the performance achieved in half cells and that obtained in full cells,however,has been neglected in much of this research.Additionally,the trade-off in the relationship between electrochemical performance and cost needs to be given more consideration.Therefore,systematic and comprehensive insights into the research status and key issues for the full-cell system need to be gained to advance its commercialization.Consequently,this review evaluates the recent progress based on various cathodes and highlights the most significant challenges for full cells.Several strategies have also been proposed to enhance the electrochemical performance of NIBs,including designing electrode materials,optimizing electrolytes,sodium compensation,and so forth.Finally,perspectives and outlooks are provided to guide future research on sodium-ion full cells.
文摘By means of selecting proper additives and optimizing catalyst composition and preparation procedures, a high-platinum and low coke deposition catalyst PS-Ⅶ for continuous catalytic reforming (CCR) without reducing its specific surface area has been successfully developed. This catalyst PS-Ⅶ was evaluated in a 100-mL pilot test unit. Study results showed that under the same reaction conditions the newly developed catalyst PS-Ⅶ achieved a 26% reduction in coke deposition as compared to the existing high-platinum CCR catalyst. This catalyst upon its first commercial application in a 1.39 Mt/a CCR unit had exhibited good anti-attrition performance and good stability in terms of its specific surface area. Compared to the original CCR catalyst this PS-Ⅶ type catalyst could reduce the coke deposition by 27.32% when operating on feedstock with low potential aromatic content, along with apparent increase in C6^+ liquid yield, hydrogen yield and aromatics yield, which could grapple with the problem associated with the catalyst regeneration constraints after CCR capacity expansion to ensure the longcycle high-load operation of the CCR unit.
基金financially supported bu the Nationol Key Technology R&D Program of China(2007BAE43B01)and SINOPEC Corporation(contact No.106076)
文摘The FCC naphtha selective hydrodesulfurization technology(RSDS-II)has been tested with different feedstocks in pilot scale.The results show that RSDS-II technology is viable in terms of its adaptability to different feedstocks.To produce gasoline with a sulfur content of less than 50μg/g by the RSDS-II technology,the gasoline RON loss is less than 1.8,0.9and 0.2 units,respectively,upon processing the conventional high-sulfur and high-olefin FCC naphtha,the high-sulfur MIP naphtha,and the medium-sulfur or low-sulfur MIP naphtha.Upon using the naphtha produced from pre-hydrotreated FCC feedstock as the RSDS-II feedstock to manufacture gasoline with a sulfur content of lower than 10μg/g,the RON loss does not exceed 1.0 unit.The RSDS-II technology has been commercialized successfully at many refineries.The result of operating commercial RSDS-II unit at the Shanghai Petrochemical Company has revealed that upon processing a feedstock containing 38.7 v% —43.3 v% of olefins and 250—470 mg/g of sulfur,the sulfur content in the treated gasoline ranges from 33μg/g to 46μg/g and the RON loss is equal to only 0.3—0.6 units.Till now this RSDS-II unit has been operating smoothly over 30 months.Thanks to its high HDS activity and good selectivity,the RSDS-II technology can meet the refinery’s needs for adequate upgrading of gasoline.
文摘Global warming touches everybody's nerve, and direct reason for sharp increasing of CO2 in the atmosphere results mainly from the use of fossil fuel in power generation and other industries. How can humans return this "devil" to underground, and keep a peaceful environment for human? Scientists from all over the world have been exploring them.
文摘The SHIFT-G technology of inverse catalyst loading is used to optimize the catalyst grading in the residue hydrotreating unit. The results, taken from pilot tests and commercial units, have showed that the optimized catalyst grading system can reasonably distribute the reaction load, effectively improve the prop- erties of hydrotreated products, prolong the operating cycle and promote economic benefits.
文摘The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through regeneration. After long period of operation, the activity of said catalysts still exhibited good sensitivity to temperature rise. Compared with the PR series catalysts, the PRT series catalysts had obviously better stability and lower coking rate.
文摘Edible mushrooms are considered as healthy food because they are low in calories and fat but rich in proteins minerals and dietary fiber(DF). Edible mushrooms are recognized as new potential resource of DF since the components of edible mushroom dietary fiber(EMDF) have shown special physiological and pharmacological effects on human and animals. In this article,the soluble and insoluble fractions of DF in different edible mushroom species have been evaluated. Biological effects of EMDF are related to promoting desired responses,for example,reducing blood cholesterol,protecting cells from free radicals attack by antioxidative effects,attenuating levels and fluctuations of blood glucose and selectively supporting the growth of beneficial gut bacteria. The EMDF plays an important role in reducing risk of cardiovascular diseases,diabetes mellitus and intestinal diseases. The non-starch polysaccharides(NSP),a kind of EMDF,is the best known and most potent mushroom-derived substances with antitumor and immunomodulatory properties. EMDF has also been reported to take part in the control of body weight,lipid homeostasis and insulin sensitivity due to its effect on specific chemical structures and physical properties. Many pharmaceutical substances with potent and unique health- enhancing properties were isolated recently from edible mushrooms and distributed worldwide. Mushroom-based dietary supplements(DSs) with potential therapeutic effects are produced from the mycelia or the fruiting bodies of mushrooms,and are consumed in the forms of capsules,tablets,or extracts. The EMDF, based on its special physiological functions on human health,shows a wide range of potential application prospects.
文摘The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.
文摘The novel FDFCC grid packing stripper is used to raise the stripping efficiency of the equipment. This technology aims to increase the gas-solid contact area and improve the gas-solid contact efficiency. This technology has been applied in the revamped 1.05 Mt/a No. 1 FCC unit at the SINOPEC Changling Branch Company. The outcome on application of this equipment has revealed that the fluidization of the stripper was stable coupled with smooth operation. At a steam stripping load of less than 50% of the design value the spent catalyst had a lower H/C ratio, and the hydrogen content in the coke after revamp of the FCC unit decreased by 8.1% compared to the case before the equipment revamp. The spent catalyst had higher activity with the dry gas and coke yields reduced by over 0.5%, resulting in goodeconomic benefits.
文摘A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.
文摘This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.
文摘MGD technology effectively integrates selective cracking reaction of olefin fraction in FCC naphtha with the stepwise cracking of light and heavy feedstocks under different severity conditions for improving FCC gasoline quality and adjusting the product slate of FCC unit. The first commercial application of MGD technology in a 1.30 Mt/a FCCU using VGO as feedstock at Tianjin Petrochemical Company showed that the olefin content in FCC naphtha decreased around 10 percentage points (by volume) with slight increase in octane number. The yields of LPG and LCO increased around 4.63 and 2.04 percentage points respectively, and the ratio between LCO to naphtha increased by 0.21. Due to capacity constraints of FCCU, the capacity decreased slightly under the MGD operation mode.
文摘This article introduces the commercial application of FCC technology equipped with a gasoline auxiliary reactor in the RFCC unit at PetroChina Harbin Petrochemical Branch Company. Test results have shown the excellent outcome for commercial application of the gasoline upgrading in the auxiliary reactor to reduce the olefin content in FCC naphtha. Application of this technology can reduce the olefin content in FCC naphtha to less than 35 v%. Adjustment of the FCC operation towards more severe conditions can further reduce the olefin content in FCC naphtha to less than 20 v%, so that the FCC naphtha can meet the current standard or meet more stringent specification requirements in the future to achieve compelling economic and social benefits.
文摘The ZHC-01 hydrocracking catalyst, characterized by high hydrogenation activity, good selectivity for middle distillates, strong resistance to nitrogen poisoning, was prepared by co-gelling. The catalyst is not only suited to the single-stage hydrocracking process, but also to the first stage of serial hydrocracking process. In parallel with the fully loaded operation of the 1.4 Mt/a hydrocracking unit at the SINOPEC Qilu Petrochemical Company, a pilot test of the ZHC-01 catalyst was also carried out on the hydrocracking unit. The test results indicated that the activity, the yield of major target products and quality of the ZHC-01 catalyst could comply with the design requirements for the hydrocracking unit, and this catalyst could be applied in the hydrocracking unit. The commercial test results showed that the ZHC-01 catalyst, featuring good activity, stability, and flexibility in production, not only could meet the demand for producing environmentally friendly middle distillates, but could also increase the resource of optimized steam cracking feedstock.
文摘This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.
文摘The wastewater discharged from the 1.0 Mt/a ethylene unit at Maoming Petrochemical Company was separated according to its quality, and a major part ofwastewater with better quality was properly treated via the process of"IRABF + high-efficiency fiber filtering + disinfection" to make the wastewater quality comply with the quality of recycled cooling water, so that the technique for reused petrochemical wastewater was more reliable technically and more reasonable economically,
文摘The commercial application of the decalcifying agent JCM-2004RPD at Khartoum Refinery Co. Ltd. is introduced in this article. This decalcifying agent has good effect for calcium removal. When the dosage of decalcifying agent was 1600 ppm, the decalcification rate of the crude oil could reach more than 60%, while the ash content of petroleum coke was on specification and the coke quality could meet the 3B class quality standard. After decalcification, the average calcium content in crude oil leaving the desa/ter was 488 ppm, and the salt content in crude after desalting could be less than 3 mg NaCl/L, with the water content in crude after desalting being lower than 0.2%.
文摘Commercial application of the DZC Ⅱ-I catalyst developed on the basis of the DZ-1 catalyst was introduced. The application tests of the catalyst under overload had proved that this catalyst demonstrated satisfactory adaptability to feedstock after continued operation for 20 months with little changes in the bed pressure drop, the reactor inlet temperature and the bed temperature rise. The DZC Ⅱ- 1 catalyst was regarded as the best catalyst for the second-stage hydrogenation of pyrolvsis gasoline.