Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save ...Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.展开更多
Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and...Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...展开更多
The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic ...The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic waste (kitchen, garden composting rubbish); incineration of “light” waste (plastic, paper, wood and bamboo etc.) and landfill of inorganic waste. The thermal energy generated in the process can be used as 1/3 of the whole energy for drying fertilizers. In the process, there is no wastewater drainage, and air emissions can be effectively controlled by a series of measures. The sanitary and environmental indicators of disposal site meet the national standards. This project has worked well for two years. It not only disposes of and reduces the MSW, but also retrieves the resource effectively. The organic fertilizer has been applied in the ten thousand acres of fields, with productivity increase by more than 10%.展开更多
China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization w...China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
This paper describes and analyzes the coconut cultivation in China,and the current comprehensive utilization of waste resources generated during cultivation and processing of coconut.The wastes generated in the proces...This paper describes and analyzes the coconut cultivation in China,and the current comprehensive utilization of waste resources generated during cultivation and processing of coconut.The wastes generated in the process of cultivation include old coconut tree trunk,roots,withered coconut leaves,coconut flower and fallen cracking coconut,mainly used for biogas extraction,direct combustion and power generation,brewing,pharmacy,and processing of building materials;the wastes generated during processing include coconut water,coconut coat,coconut shell and coconut meal,mainly used for processing beverages,pharmaceutical products,activated carbon,medium and feed.This paper analyzes and explores some problems in the process of comprehensive utilization of coconut waste in China,such as insufficient understanding,inadequate development and lack of research efforts,and finally puts forth the corresponding development countermeasures.展开更多
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high...Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”展开更多
This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
With the rapid development of industrialization,it is inevitable to produce solid wastes in the fields of energy petrochemical industry.However,the storage and utilization of these solid wastes have become a considera...With the rapid development of industrialization,it is inevitable to produce solid wastes in the fields of energy petrochemical industry.However,the storage and utilization of these solid wastes have become a considerable challenge.Due to the main element composition of these solid wastes including silicon and aluminum,it has attracted extensive attention for synthesizing zeolites.This review summarized the properties of major solid wastes including coal fly ash,coal gangue,spent fluid catalytic cracking(FCC)catalyst,lithium slag,bauxite residue,and waste glass.Then,the preparation of LTA,FAU,ZSM-5,SSZ-13,Beta,and MOR zeolites from these solid wastes were introduced.Finally,the current challenges and perspectives were discussed.展开更多
Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to...Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to produce it through solid state reaction from 900℃ to 1300℃. The conducted reaction was monitored by XRD step by step. Amount of Wollastonite formed at every temperature was also studied to some extent. Analyses of the obtained data indicated that the target mineral formation was quite effective and almost proportional to a rise in temperature up to 1200℃. The results from both, XRD and chemical analysis were found in fair agreement with one another展开更多
The preparation of sulfoaluminate cementitious materials(SCM)is a promising way to massively utilize solid wastes.Iron phases are significant in SCM system but the thermodynamic data of some key minerals,such as6 CaO&...The preparation of sulfoaluminate cementitious materials(SCM)is a promising way to massively utilize solid wastes.Iron phases are significant in SCM system but the thermodynamic data of some key minerals,such as6 CaO·Al2 O3·2 Fe2 O3(C6 AF2)and 6 CaO·2 Al2 O3·Fe2 O3(C6 A2 F),are missing,which greatly hinders the SCM optimization in a theoretical way.This work,for the first time,calculated the standard formation enthalpy,Gibbs free energy of formation,entropy and molar heat capacity for C6 AF2 and C6 A2 F and lowered the errors to the least with the reference of C4 AF data in the literature.By building the function diagram of Gibbs free energy changes with temperature for the basic iron phase formation reactions with the obtained thermodynamic data,it is proved that the formation likeliness of C6 AF2 is higher than that of C6 A2 F,as is accordant to the literatures and verifies the correctness of obtained data.This work provides a good theoretical foundation to optimize SCM mineral system and to study relevant mechanism deeply.展开更多
Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of mod...Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of modified urea-formaldehyde glue by adding black pulping liquor and the application in extruding the medium density fibre board using this modified urea-formaldehyde glue is researched. Results show that when applying the preparation technology that alkaline reaction and then weak acid reaction, the appropriate preparation process is as follows: the adding urea process is divided into three stages (proportion 2 : 1 : 1) ; the pH value is 8.0, and the reaction time is 40 min in the addition reaction stage; the pH value will be naturally reduced to 3.5 -5.0, and the reaction time is 45 min in the aggregation reaction stage; the pH value is 8.0 in the urea complement stage. And the optimal condition of the reconstructive preparation the modified ureaformaldehyde glue is adding the condensed black pulping liquor after hydroxymethylation in the beginning of polycondensation reaction by 5% proportion. The application in extruding medium density fibre board with this modified urea-fosmaldehyde glue is proved feasible.展开更多
This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In...This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.展开更多
Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection...Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
文摘Estimating the residual heat of blast furnace slag flushing in China,classifying and introducing the current proposed methods of slag flushing waste heat utilization,and listing existing cases.In order to better save energy and water in the slag flushing process of blast furnaces,an ideal comprehensive cascade utilization system scheme for annual recovery of waste heat is proposed.Based on the measured waste heat data of a steel plant,design calculations are carried out to further analyze the economic feasibility of the new scheme and provide reference for its promotion and application.
文摘Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...
文摘The project for treating MSW of 200 tons each day was built in Yibin, Sichuan Province of China. The disposal processes are: separation and selection of usable resources; compost and fermentation of “heavy” organic waste (kitchen, garden composting rubbish); incineration of “light” waste (plastic, paper, wood and bamboo etc.) and landfill of inorganic waste. The thermal energy generated in the process can be used as 1/3 of the whole energy for drying fertilizers. In the process, there is no wastewater drainage, and air emissions can be effectively controlled by a series of measures. The sanitary and environmental indicators of disposal site meet the national standards. This project has worked well for two years. It not only disposes of and reduces the MSW, but also retrieves the resource effectively. The organic fertilizer has been applied in the ten thousand acres of fields, with productivity increase by more than 10%.
基金Supported by Innovation Funds of Jiangxi Academy of Agricultural Sciences(20141CBS003)Jiangxi Provincial Earmarked Fund for Agriculture Research System(JXARS-02)~~
文摘China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
基金Supported by Hainan University Youth Foundation(qnjj1182)
文摘This paper describes and analyzes the coconut cultivation in China,and the current comprehensive utilization of waste resources generated during cultivation and processing of coconut.The wastes generated in the process of cultivation include old coconut tree trunk,roots,withered coconut leaves,coconut flower and fallen cracking coconut,mainly used for biogas extraction,direct combustion and power generation,brewing,pharmacy,and processing of building materials;the wastes generated during processing include coconut water,coconut coat,coconut shell and coconut meal,mainly used for processing beverages,pharmaceutical products,activated carbon,medium and feed.This paper analyzes and explores some problems in the process of comprehensive utilization of coconut waste in China,such as insufficient understanding,inadequate development and lack of research efforts,and finally puts forth the corresponding development countermeasures.
基金National Natural Science Foundation of China(No.51774331)Funds for Nationsl&Local Joint Engineering Research Center of Mineral Salt Deep Utilization(No.SF202103).
文摘Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.”
文摘This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
基金supported by the National Natural Science Foundation of China(Nos.22288101,U21B20101,22172141)the Zhejiang Provincial Natural Science Foundation,China(No.LR24B030001).
文摘With the rapid development of industrialization,it is inevitable to produce solid wastes in the fields of energy petrochemical industry.However,the storage and utilization of these solid wastes have become a considerable challenge.Due to the main element composition of these solid wastes including silicon and aluminum,it has attracted extensive attention for synthesizing zeolites.This review summarized the properties of major solid wastes including coal fly ash,coal gangue,spent fluid catalytic cracking(FCC)catalyst,lithium slag,bauxite residue,and waste glass.Then,the preparation of LTA,FAU,ZSM-5,SSZ-13,Beta,and MOR zeolites from these solid wastes were introduced.Finally,the current challenges and perspectives were discussed.
文摘Wollastonite, a mineral of wide industrial applications was synthesised from rice husk ash silica and limestone. A number of raw batches consisting of these starting materials, in 1:1 molar ratio, were heat treated to produce it through solid state reaction from 900℃ to 1300℃. The conducted reaction was monitored by XRD step by step. Amount of Wollastonite formed at every temperature was also studied to some extent. Analyses of the obtained data indicated that the target mineral formation was quite effective and almost proportional to a rise in temperature up to 1200℃. The results from both, XRD and chemical analysis were found in fair agreement with one another
基金Supported by the Program for National Key R&D Plan(2017YFC0703100).
文摘The preparation of sulfoaluminate cementitious materials(SCM)is a promising way to massively utilize solid wastes.Iron phases are significant in SCM system but the thermodynamic data of some key minerals,such as6 CaO·Al2 O3·2 Fe2 O3(C6 AF2)and 6 CaO·2 Al2 O3·Fe2 O3(C6 A2 F),are missing,which greatly hinders the SCM optimization in a theoretical way.This work,for the first time,calculated the standard formation enthalpy,Gibbs free energy of formation,entropy and molar heat capacity for C6 AF2 and C6 A2 F and lowered the errors to the least with the reference of C4 AF data in the literature.By building the function diagram of Gibbs free energy changes with temperature for the basic iron phase formation reactions with the obtained thermodynamic data,it is proved that the formation likeliness of C6 AF2 is higher than that of C6 A2 F,as is accordant to the literatures and verifies the correctness of obtained data.This work provides a good theoretical foundation to optimize SCM mineral system and to study relevant mechanism deeply.
基金Sponsored by the Ministerial Level Advanced Research Foundation(20060013)
文摘Combining the characteristics of the black pulping liquor that contains a lot of lignin and other biomass resources, the technology of comprehensive waste utilization is employed. The reconstructive preparation of modified urea-formaldehyde glue by adding black pulping liquor and the application in extruding the medium density fibre board using this modified urea-formaldehyde glue is researched. Results show that when applying the preparation technology that alkaline reaction and then weak acid reaction, the appropriate preparation process is as follows: the adding urea process is divided into three stages (proportion 2 : 1 : 1) ; the pH value is 8.0, and the reaction time is 40 min in the addition reaction stage; the pH value will be naturally reduced to 3.5 -5.0, and the reaction time is 45 min in the aggregation reaction stage; the pH value is 8.0 in the urea complement stage. And the optimal condition of the reconstructive preparation the modified ureaformaldehyde glue is adding the condensed black pulping liquor after hydroxymethylation in the beginning of polycondensation reaction by 5% proportion. The application in extruding medium density fibre board with this modified urea-fosmaldehyde glue is proved feasible.
文摘This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.
文摘Water supply project of drawing from the Songhua River in central cities of Jilin is taken as research object.On the basis of analyzing project characteristics and natural conditions of the project area,site selection of waste slag yard of water diversion project and design of water and soil conservation measures are discussed.Rationality of site selection of waste slag yard and pertinence of prevention and control measures of water and soil loss in waste slag yard are analyzed,and comprehensive utilization of waste slag in large-scale production and construction projects is explored.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.