Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ...Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.展开更多
Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)va...Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.展开更多
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne...Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.展开更多
Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detec...Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detection,and soft robotic skin.In recent decades,FCPC‐based strain sensors with high stretchability and sensitivity,short response time,and excellent stability have been developed,which are expected to be more versatile and intelligent.Smart strain sensors are required to provide wearable comfort,such as breathability,selfcooling ability,and so forth.To adapt to the harsh environment,wearable strain sensors should also be highly adaptive to protect the skin and the sensor itself.In addition,portable power supply system,multisite sensing capability,and multifunctionality are crucial for the next generation of FCPC‐based strain sensor.展开更多
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim...Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.展开更多
A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise i...A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites.展开更多
Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epo...Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.展开更多
Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain...Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.展开更多
With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,wel...With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.展开更多
High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the norma...High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.展开更多
Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient tempera...Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (l-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear 1-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET micro fibers intersections.展开更多
This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output...This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.展开更多
Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI s...Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.展开更多
Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC)effect is of great significance for large-scale application of polymer based PTC composites,owing to its contrib...Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC)effect is of great significance for large-scale application of polymer based PTC composites,owing to its contribution to the security and reliability.Herein,we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF)composite with outstanding PTC reproducibility,by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf2])into the composite.After multiple repeated temperature cycles,the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%.Our studies revealed that[OMIm][NTf2]contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii)it inhibits the crystallization of PVDF through the dilution effect,leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF.This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.展开更多
Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrosp...Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrospinning to form precursor microfibers and carry the aniline monomers. Fourier-transform infrared (FTIR) results demonstrated that PANi was successfully polymerized in the microfibers. The morphology of the PVC-AN-PANi microfibers was observed by scanning electron microscopy (SEM). Results of differential scanning calorimetry indicated that the polymer composite of PVC-AN-PANi formed via molecular interactions. Although the conductivity of PVC-AN-PANi microfibers was still limited (2.2 × 10^-8 S/cm), this method provided an effective and convenient approach for preparing highly uniform and soft microfibrous electrodes.展开更多
Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium per...Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium perchlorate(LiClO4).The composite polymer blend electrolytes were prepared by solvent casting technique.The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/UCIO4 polymer electrolyte.The addition of TiO2nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%.The addition of TiO2 also enhanced the thermal stability of the electrolyte.The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR) techniques.The scanning electron microscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.展开更多
Smart structures have the advantages of high system integrity and diverse sensing capabilities.However,the labor-intensive and timeconsuming fabrication process hinders the large-scale adoption of smart structures.Des...Smart structures have the advantages of high system integrity and diverse sensing capabilities.However,the labor-intensive and timeconsuming fabrication process hinders the large-scale adoption of smart structures.Despite recent attempts to develop sensorembedded structures using 3D printing technologies,the reported smart structures generally suffer from the complex fabrication process,constrained part size,and limited sensing modality.Herein,we propose a workflow to design and fabricate novel smart structures via multi-material fused deposition modeling(FDM)-based 3D printing.More specifically,conductive filaments with tailorable mechanical and elec-trical properties,e.g.piezoresistive effects,were developed.Additionally,the printing process was optimized for processing soft filaments with Young’s modulus around 2 MPa,resolving the issue of filament buckling.Furthermore,the potential applications of the proposed workflow were showcased using three design cases,i.e.biaxial strain sensor,smart tire,and cable-driven soft finger with multiple sensing capabilities.This workflow provides a cost-effective and rapid solution for developing novel smart structures with soft materials.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A2C1008380)Nano Material Technology Development Program[NRF-2015M3A7B6027970]+1 种基金the Chey Institute for Advanced Studies'International Scholar Exchange Fellowship for the academic year of 2021-2022supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20215710100170).
文摘Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.
基金National Natural Science Foundation of China(51773169 and 51973173)Guangdong Basic and Applied Basic Research Foundation(2019B1515120093)+2 种基金Technological Base Scientific Research ProjectsNatural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province(2019JC-11)Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘Rapid development of energy,electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites.However,the thermal conductivity coefficient(λ)values of prepared thermally conductive polymer composites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites.Aimed at that,based on the accumulation of the previous research works by related researchers and our research group,this paper proposes three possible directions for breaking through the bottlenecks:(1)preparing and synthesizing intrinsically thermally conductive polymers,(2)reducing the interfacial thermal resistance in thermally conductive polymer composites,and(3)establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization.Also,the future development trends of the three above-mentioned directions are foreseen,hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.
基金supported by the National Natural Science Foundation of China(Nos.51973142,52033005,52003169).
文摘Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.
基金Henan Province University Innovation Talents Support Program,Grant/Award Number:20HASTIT001National Natural Science Foundation of China,Grant/Award Numbers:51773183,U1604253,U1804133Innovation Team of Colleges and Universities in Henan Province,Grant/Award Number:20IRTSTHN002。
文摘Wearable strain sensors based on flexible conductive polymer composites(FCPCs)have attracted great attention due to their applications in the fields of human–machine interaction,disease diagnostics,human motion detection,and soft robotic skin.In recent decades,FCPC‐based strain sensors with high stretchability and sensitivity,short response time,and excellent stability have been developed,which are expected to be more versatile and intelligent.Smart strain sensors are required to provide wearable comfort,such as breathability,selfcooling ability,and so forth.To adapt to the harsh environment,wearable strain sensors should also be highly adaptive to protect the skin and the sensor itself.In addition,portable power supply system,multisite sensing capability,and multifunctionality are crucial for the next generation of FCPC‐based strain sensor.
基金supported by the KIST Institutional Program (Project No.2E32501-23-106)the KU-KIST Graduate School of Converging Science and Technology Program+3 种基金the National Research Foundation of Korea (NRF) grant funded by the Korean government (the Ministry of Science, ICT, MSIT) (RS-2022-00165524)the development of technologies for electroceuticals of the National Research Foundataion (NRF) funded by the Korean government (MSIT) (RS-2023-00220534)the Ministry of Science and ICT (MSIT), Korea, under the ICT Creative Consilience program (IITP-2023-2020-0-01819) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation)Start up Pioneering in Research and Innovation(SPRINT) through the Commercialization Promotion Agency for R&D Outcomes(COMPA) grant funded by the Korea government(Ministry of Science and ICT) (1711198921)
文摘Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.
文摘A novel method for preparing conductive carbon black fllled polymer composites with low percolation threshold from polyurethane emulsion are reported in this paper. The experimental results indicate that with a rise in carbon black concentration the insulator-conductor transition in the emulsion blended composites occurs at 0.8-1.4vol%. In contrast, the solution blended composites exhibit drastic increase in conductivity at conducting filler fraction as high as 12.3-13.3vol%. It is demonstrated that the composites microstructure rather than chemical structure of the matrix polymer predominantly determines the electrical conduction performance of the composites.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022M3J7A1062940).
文摘Epoxy-based nano-composites can be ideal electromagnetic interference(EMI)-shielding materials owing to their lightness,chemical inertness,and mechanical durability.However,poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications,such as smart wristband,medical cloth,aerospace,and military equipment.In this study,we explored hybrid nanofillers of single-walled carbon nanotubes(SWCNT)/reduced graphene oxide(rGO)as conductive inks and polyester fabrics(PFs)as a substrate for flexible EMI-shielding composites.The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m^(−1)and 38.5 MPa m^(1/2),which are~270 and 65%enhancement over those of the composites without SWCNTs,respectively.Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test.An EMI-shielding effectiveness of~41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient.These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks,leading to superior EMI-shielding performance.We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.
基金Project(ZZYJKT2019-05)supported by State Key Laboratory of High Performance Complex Manufacturing,ChinaProject(51605497)supported by the National Natural Science Foundation of ChinaProject(2020CX05)supported by Innovation-Driven Project of Central South University,China。
文摘Conductive polymer composites(CPCs)are widely used in the flexible strain sensors due to their simple fabrication process and controllable sensing properties.However,temperature has a significance impact on the strain sensing performance of CPCs.In this paper,the strain sensing characteristics of MWCNTs/PDMS composites under temperature loading were systematically studied.It was found that the sensitivity decreased with the increase of temperature and the phenomenon of shoulder peak also decreased.Based on the theory of polymer mechanics,it was found that temperature could affect the conductive network by changing the motion degree of PDMS molecular chain,resulting in the change of sensing characteristics.Finally,a mathematical model of the resistance against loading condition(strain and temperature),associated with the force−electrical equivalent relationship of composites,was established to discuss the experimental results as well as the sensing mechanism.The results presented in this paper was believed helpful for the further application of strain sensors in different temperature conditions.
基金supported by National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(2021M3F3A2A01037365,RS-2023-00207970)KAINEET Institute Seed Money Project,Post-AI Research Institute.
文摘With increasing personalized healthcare,fiber-based wearable temperature sensors that can be incorporated into textiles have attracted more attention in the field of wearable electronics.Here,we present a flexible,well-passivated,polymer–nanocomposite–based fiber temperature sensor fabricated by a thermal drawing process of multiple materials.We engineered a preform to optimize material processability and sensor performance by considering the rheological and functional properties of the preform materials.The fiber temperature sensor consisted of a temperature-sensing core made from a conductive polymer composite of thermoplastic polylactic acid,a conductive carbon filler,reduced graphene oxide,and a highly flexible linear low-density polyethylene passivation layer.Our fiber temperature sensor exhibited adequate sensitivity(−0.285%/℃)within a temperature range of 25–45℃with rapid response and recovery times of 11.6 and 14.8 s,respectively.In addition,it demonstrated a consistent and reliable temperature response under repeated mechanical and chemical stresses,which satisfied the requirements for the long-term application of wearable fiber sensors.Furthermore,the fiber temperature sensor sewn onto a daily cloth and hand glove exhibited a highly stable performance in response to body temperature changes and temperature detection by touch.These results indicate the great potential of this sensor for applications in wearable,electronic skin,and other biomedical devices.
基金Foundation of National Natural Science Foundation of China,Grant/Award Number:51903145Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China,Grant/Award Number:2019JC-11Wang L.would like to thank the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,Grant/Award Number:CX202053。
文摘High-frequency electromagnetic waves and electronic products can bring great convenience to people’s life,but lead to a series of electromagnetic interference(EMI)problems,such as great potential dangers to the normal operation of elec-tronic components and human safety.Therefore,the research of EMI shield-ing materials has attracted extensive attention by the scholars.Among them,polymer-based EMI shielding materials with light weight,high specific strength,and stable properties have become the current mainstream.The construction of 3D conductive networks has proved to be an effective method for the prepara-tion of polymer-based EMI shielding materials with excellent shielding effective-ness(SE).In this paper,the shielding mechanism of polymer-based EMI shield-ing materials with 3D conductive networks is briefly introduced,with emphasis on the preparation methods and latest research progress of polymer-based EMI shielding materials with different 3D conductive networks.The key scientific and technical problems to be solved in the field of polymer-based EMI shielding materials are also put forward.Finally,the development trend and application prospects of polymer-based EMI shielding materials are prospected.
基金financially supported by the National Science Fund for Distinguished Young Scholars (No. 50925311)National Science Fund of China (Nos. 20976112, 51033004)
文摘Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (l-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear 1-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET micro fibers intersections.
基金supported by the Anhui Provincial Key Research and Development Program No.2022f04020008National Natural Science Foundation of China No.62301522Anhui Provincial Nature Science Foundation No.1908085MF196.
文摘This paper introduces a self-sensing anthropomorphic robot hand driven by Twisted String Actuators(TSAs).The use of TSAs provides several advantages such as muscle-like structures,high transmission ratios,large output forces,high efficiency,compactness,inherent compliance,and the ability to transmit power over distances.However,conventional sensors used in TSA-actuated robotic hands increase stiffness,mass,volume,and complexity,making feedback control challenging.To address this issue,a novel self-sensing approach is proposed using strain-sensing string based on Conductive Polymer Composite(CPC).By measuring the resistance changes in the strain-sensing string,the bending angle of the robot hand's fingers can be estimated,enabling closed-loop control without external sensors.The developed self-sensing anthropomorphic robot hand comprises a 3D-printed structure with five fingers,a palm,five self-sensing TSAs,and a 3D-printed forearm.Experimental studies validate the self-sensing properties of the TSA and the anthropomorphic robot hand.Additionally,a real-time Virtual Reality(VR)monitoring system is implemented for visualizing and monitoring the robot hand's movements using its self-sensing capabilities.This research contributes valuable insights and advancements to the field of intelligent prosthetics and robotic end grippers.
基金the financial grant provided by the State Key Program of National Natural Science foundation of China(Grant No.51433008)Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20160331142330969)。
文摘Lightweight,scalable,mechanically flexible conductive polymer composite was always desirable for electromagnetic interference(EMI)shielding applications.In this work,we showcased a novel approach to the superior EMI shielding composite materials by orchestrating the multilayered structure and synergistic system.The asymmetric structure with the carbonyl irons(CI)-rich Ti_(3)C_(2)T_(x)/poly(vinylidene fluoride)(PVDF)magneto-electric layer jointly behind the Ti_(3)C_(2)T_(x) nanosheets filled PVDF layer was designed and fabricated with the aid of a facile but efficient magnetic field-induced method and was then hotpressed into a multilayer structured film.Ti_(3)C_(2)T_(x) nanosheets were excluded by CI agglomeration layer in the asymmetric film to form the complete 3D electrical conductive skeletons.Based on this strategy,EMI shielding properties of the asymmetric multilayer structured composite was superior to the homogeneous blend and sandwiched or alternating layered composites.In addition,an increase in CI content in the composite referred to the thickening of CI-rich layers,making it gain the most powerful EMI SE values,i.e.42.8 d B for DCMP20–10 film(20 wt%CI,10 wt%Ti_(3)C_(2)T_(x))at a thickness of 0.4 mm.More importantly,the composite transformed from a reflection type to an absorption dominating EMI shielding material due to the multireflections and magneto-electric synergism in the CI-rich Ti_(3)C_(2)T_(x)/PVDF layers.Meanwhile,the EMI SE of the composites can be adjusted by increase of either theoverall thickness,or the layer numbers of m-DCMP sheets.The thickness specific EMI SE was calculated as 165.25 d B mm^(-1)for 4-sheet composite film,a record high value among the high efficiency polymer-based EMI shielding materials.This method offered an alternative protocol for preferential integration of excellent EMI shielding performance with high mechanical performance in CPC materials.
基金financially supported by the National Natural Science Foundation of China(Nos.51803103 and 21873059)Taishan Mountain Scholar Foundation(Nos.TS20081120 and tshw20110510)。
文摘Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC)effect is of great significance for large-scale application of polymer based PTC composites,owing to its contribution to the security and reliability.Herein,we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF)composite with outstanding PTC reproducibility,by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf2])into the composite.After multiple repeated temperature cycles,the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%.Our studies revealed that[OMIm][NTf2]contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii)it inhibits the crystallization of PVDF through the dilution effect,leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF.This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.
基金funded by the Fundamental Research Funds for the Central Universities(No.JUSRP31104)the Open Project Program of Key Laboratory of Eco-textiles(Ministry of Education,Jiangnan University,No.KLET1209)+1 种基金National High-tech R&D Program of China(863 Program,No.2012AA030313)Jiangsu Province Innovation Team in Colleges and Universities(No.Sue[2009]10)
文摘Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrospinning to form precursor microfibers and carry the aniline monomers. Fourier-transform infrared (FTIR) results demonstrated that PANi was successfully polymerized in the microfibers. The morphology of the PVC-AN-PANi microfibers was observed by scanning electron microscopy (SEM). Results of differential scanning calorimetry indicated that the polymer composite of PVC-AN-PANi formed via molecular interactions. Although the conductivity of PVC-AN-PANi microfibers was still limited (2.2 × 10^-8 S/cm), this method provided an effective and convenient approach for preparing highly uniform and soft microfibrous electrodes.
基金the UGC,New Delhi,India for providing financial support to carry out this work
文摘Effects of nano-ceramic filler titanium oxide(TiO2) have been investigated on the ionic conductance of polymeric complexes consisting of polyvinyl chloride)(PVC)/poly(ethyl methacrylate)(PEMA),and lithium perchlorate(LiClO4).The composite polymer blend electrolytes were prepared by solvent casting technique.The TiO2 nanofillers were homogeneously dispersed in the polymer electrolyte matrix and exhibited excellent interconnection with PVC/PEMA/PC/UCIO4 polymer electrolyte.The addition of TiO2nanofillers improved the ionic conductivity of the polymer electrolyte to some extent when the content of TiO2 is 15 wt%.The addition of TiO2 also enhanced the thermal stability of the electrolyte.The changes in the structural and complex formation properties of the materials are studied by X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FTIR) techniques.The scanning electron microscope image of nano-composite polymer electrolyte membrane confirms that the TiO2 nanoparticles were distributed uniformly in the polymer matrix.
基金This work was supported by the National Key Research and Development Program of China[No.2020YFB1312900]National Natural Science Foundation of China[No.52105261]Guangdong Basic and Applied Basic Research Foundation[No.2022A1515010316].
文摘Smart structures have the advantages of high system integrity and diverse sensing capabilities.However,the labor-intensive and timeconsuming fabrication process hinders the large-scale adoption of smart structures.Despite recent attempts to develop sensorembedded structures using 3D printing technologies,the reported smart structures generally suffer from the complex fabrication process,constrained part size,and limited sensing modality.Herein,we propose a workflow to design and fabricate novel smart structures via multi-material fused deposition modeling(FDM)-based 3D printing.More specifically,conductive filaments with tailorable mechanical and elec-trical properties,e.g.piezoresistive effects,were developed.Additionally,the printing process was optimized for processing soft filaments with Young’s modulus around 2 MPa,resolving the issue of filament buckling.Furthermore,the potential applications of the proposed workflow were showcased using three design cases,i.e.biaxial strain sensor,smart tire,and cable-driven soft finger with multiple sensing capabilities.This workflow provides a cost-effective and rapid solution for developing novel smart structures with soft materials.