This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function...This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function. Gradient fields are irrotational, as in the curl in all conservative vector fields is zero, by Clairaut’s Theorem. Additionally, line integrals in conservative vector fields are path-independent, and line integrals over closed paths are always equal to zero, properties proved by the Gradient Theorem of multivariable calculus. Gradient fields represent conservative forces, and the associated potential function is analogous to potential energy associated with said conservative forces. The Intersect Rule provides a new, unique shortcut for determining if a vector field is conservative and deriving potential functions, by treating the indefinite integral as a set of infinitely many functions which satisfy the integral.展开更多
The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When thi...The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.展开更多
文摘This paper covers the concept of a conservative vector field, and its application in vector physics and Newtonian mechanics. Conservative vector fields are defined as the gradient of a scalar-valued potential function. Gradient fields are irrotational, as in the curl in all conservative vector fields is zero, by Clairaut’s Theorem. Additionally, line integrals in conservative vector fields are path-independent, and line integrals over closed paths are always equal to zero, properties proved by the Gradient Theorem of multivariable calculus. Gradient fields represent conservative forces, and the associated potential function is analogous to potential energy associated with said conservative forces. The Intersect Rule provides a new, unique shortcut for determining if a vector field is conservative and deriving potential functions, by treating the indefinite integral as a set of infinitely many functions which satisfy the integral.
文摘The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.