期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Automatic measurement of three-phase contact angles in pore throats based on digital images
1
作者 ZANG Chuanzhen WANG Lida +3 位作者 ZHOU Kaihu YU Fuwei JIANG Hanqiao LI Junjian 《Petroleum Exploration and Development》 SCIE 2023年第2期442-449,共8页
With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flood... With the help of digital image processing technology, an automatic measurement method for the three-phase contact angles in the pore throats of the microfluidic model was established using the microfluidic water flooding experiment videos as the data source. The results of the new method were verified through comparing with the manual measurement data.On this basis, the dynamic changes of the three-phase contact angles under flow conditions were clarified by the contact angles probability density curve and mean value change curve. The results show that, for water-wetting rocks, the mean value of the contact angles is acute angle during the early stage of the water flooding process, and it increases with the displacement time and becomes obtuse angle in the middle-late stage of displacement as the dominant force of oil phase gradually changes from viscous force to capillary force. The droplet flow in the remaining oil occurs in the central part of the pore throats, without three-phase contact angle. The contact angles for the porous flow and the columnar flow change slightly during the displacement and present as obtuse angles in view of mean values, which makes the remaining oil poorly movable and thus hard to be recovered. The mean value of the contact angle for the cluster flow tends to increase in the flooding process, which makes the remaining oil more difficult to be recovered. The contact angles for the membrane flow are mainly obtuse angles and reach the highest mean value in the late stage of displacement, which makes the remaining oil most difficult to be recovered. After displacement, the remaining oils under different flow regimes are just subjected to capillary force, with obtuse contact angles, and the wettability of the pore throat walls in the microfluidic model tends to be oil-wet under the action of crude oil. 展开更多
关键词 microfluidic model water flooding experiment digital image processing three-phase contact angle measure-ment method flow regime of the remaining oil
下载PDF
Modeling Superhydrophobic Contact Angles and Wetting Transition 被引量:9
2
作者 Nan Gao, Yuying YanDBE, Faculty of Engineering, University of Nottingham, NGl 2RD, UK 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期335-340,共6页
It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently p... It is well known that surface roughness has a very important effect on superhydrophobicity.The Wenzel and Cassie-Baxter models,which correspond to the homogeneous and heterogeneous wetting respectively,are currently primary instructions for designing superhydrophobic surfaces.However,the particular drop shape that a drop exhibits might depend on how it is formed. A water drop can occupy multiple equilibrium states,which relate to different local minimal energy.In some cases,both equilibrium states can even co-exist on a same substrate.Thus the apparent contact angles may vary and have different values.We discuss how the Wenzel and Cassie-Baxter equations determine the homogeneous and heterogeneous wetting theoretically. Contact angle analysis on hierarchical surface structure and contact angle hysteresis has been put specific attention.In particular, we study the energy barrier of transition from Cassie-Baxter state to Wenzel state,based on existing achievement by previous researchers,to determine the possibility of the transition and how it can be interpreted.It has been demonstrated that surface roughness and geometry will influence the energy required for a drop to get into equilibrium,no matter it is homogeneous or heterogeneous wetting. 展开更多
关键词 superhydrophobic surface contact angle wetting transition energy balance biomimetics
下载PDF
Machine Vision Based Measurement of Dynamic Contact Angles in Microchannel Flows 被引量:5
3
作者 Valtteri Heiskanen Kalle Marjanen Pasi Kallio 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第4期282-290,共9页
When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of mate... When characterizing flows in miniaturized channels, the determination of the dynamic contact angle is important. By measuring the dynamic contact angle, the flow properties of the flowing liquid and the effect of material properties on the flow can be characterized. A machine vision based system to measure the contact angle of front or rear menisci of a moving liquid plug is described in this article. In this research, transparent flow channels fabricated on thermoplastic polymer and sealed with an adhesive tape are used. The transparency of the channels enables image based monitoring and measurement of flow variables, including the dynamic contact angle. It is shown that the dynamic angle can be measured from a liquid flow in a channel using the image based measurement system. An image processing algorithm has been developed in a MATLAB environment. Images are taken using a CCD camera and the channels are illuminated using a custom made ring light. Two fitting methods, a circle and two parabolas, are experimented and the results are compared in the measurement of the dynamic contact angles. 展开更多
关键词 digital image processing machine vision MICROFLUIDICS microchannel flow dynamic contact angle image based measurement
下载PDF
Comparative study of two lattice Boltzmann multiphase models for simulating wetting phenomena: implementing static contact angles based on the geometric formulation 被引量:1
4
作者 Feng YE Qinfeng DI +3 位作者 Wenchang WANG Feng CHEN Huijuan CHEN Shuai HUA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第4期513-528,共16页
Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such sys... Wetting phenomena are widespread in nature and industrial applications. In general, systems concerning wetting phenomena are typical multicomponent/multiphase complex fluid systems. Simulating the behavior of such systems is important to both scientific research and practical applications. It is challenging due to the complexity of the phenomena and difficulties in choosing an appropriate numerical method. To provide some detailed guidelines for selecting a suitable multiphase lattice Boltzmann model, two kinds of lattice Boltzmann multiphase models, the modified S-C model and the H-C-Z model, are used in this paper to investigate the static contact angle on solid surfaces with different wettability combined with the geometric formulation(Ding, H. and Spelt, P.D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75(4), 046708(2007)). The specific characteristics and computational performance of these two lattice Boltzmann method(LBM) multiphase models are analyzed including relationship between surface tension and the control parameters, the achievable range of the static contact angle, the maximum magnitude of the spurious currents(MMSC), and most importantly, the convergence rate of the two models on simulating the static contact angle. The results show that a wide range of static contact angles from wetting to non-wetting can be realized for both models. MMSC mainly depends on the surface tension. With the numerical parameters used in this work, the maximum magnitudes of the spurious currents of the two models are on the same order of magnitude. MMSC of the S-C model is universally larger than that of the H-C-Z model. The convergence rate of the S-C model is much faster than that of the H-C-Z model. The major foci in this work are the frequently-omitted important details in simulating wetting phenomena. Thus, the major findings in this work can provide suggestions for simulating wetting phenomena with LBM multiphase models along with the geometric formulation. 展开更多
关键词 lattice Boltzmann method(LBM) wetting phenomenon static contact angle
下载PDF
Water contact angles on charged surfaces in aerosols
5
作者 Yu-Tian Shen Ting Lin +3 位作者 Zhen-Ze Yang Yong-Feng Huang Ji-Yu Xu Sheng Meng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期569-574,共6页
Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface char... Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments. 展开更多
关键词 water contact angle charged surface AEROSOLS
原文传递
The effect of surface anisotropy on contact angles and the characterization of elliptical cap droplets 被引量:2
6
作者 WANG ZhanLong CHEN EnHui ZHAO YaPu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第2期309-316,共8页
In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle cha... In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications,and deepen the understanding of wetting behavior on grooved surfaces. 展开更多
关键词 DROPLET contact angle ELLIPSE contact line grooved surface
原文传递
Spontaneous Imbibition of Water and Determination of Effective Contact Angles in the Eagle Ford Shale Formation Using Neutron Imaging 被引量:1
7
作者 Victoria H.DiStefano Michael C.Cheshire +11 位作者 Joanna McFarlane Lindsay M.Kolbus Richard E.Hale Edmund Perfect Hassina Z.Bilheux Louis J.Santodonato Daniel S.Hussey David L.Jacobson Jacob M.LaManna Philip R.Bingham Vitaliy Starchenko Lawrence M.Anovitz 《Journal of Earth Science》 SCIE CAS CSCD 2017年第5期874-887,共14页
Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extracti... Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron im- aging to measure the spontaneous imbibition of water into fractures of Eagle Ford shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order diffe- rential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective con- tact angles that were slightly higher than static contact angles due to effects of in-situ changes in veloci- ty, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that aver- age fracture widths are not satisfactory for modeling imbibition in natural systems. 展开更多
关键词 spontaneous imbibition effective contact angle neutron imaging Eagle Ford shale rock fractures.
原文传递
Effect of Open Porosity of Y2O3 Ceramic on the Apparent Contact Angles and Interactions Between Ti47Al Alloys and Y2O3 Ceramic 被引量:2
8
作者 Chao Ran Hua-rui Zhang +2 位作者 Hu Zhang Bei-bei Wan Peng Bai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期456-463,共8页
The effect of open porosity of Y2O3ceramic on the apparent contact angle and interaction between molten Ti47 Al alloy and Y2O3ceramic substrates under pure Ar was investigated by using a sessile drop method at 1600 &#... The effect of open porosity of Y2O3ceramic on the apparent contact angle and interaction between molten Ti47 Al alloy and Y2O3ceramic substrates under pure Ar was investigated by using a sessile drop method at 1600 °C. As the open porosity increased from 9.6% to 30.3%, the spreading rate of molten Ti47 Al alloys on Y2O3ceramic substrates reduced from 2.3 to 1.1°/s; meanwhile, the final equilibrium contact angles increased from 55.8° to 63.6°. The microstructure observations revealed that with increasing the open porosity of the Y2O3substrates, the thickness of sand adhesion at the interfaces of the alloy droplets increased from 5.4 to 15.7 lm, and ceramic particles in the alloy matrix increased as well. The increasing contact area between the molten alloy and the substrate played a dominant role in determining the interaction on Ti Al/Y2O3interface. 展开更多
关键词 contact angle Yttria Titanium aluminides Interaction Open porosity
原文传递
Contact Angle Prediction Model for Underwater Oleophobic Surfaces Based on Multifractal Theory
9
作者 Jiang Huayi You Yanzhen +4 位作者 Hu Juan Tian Dongmei Qi Hongyuan Sun Nana Liu Mei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期37-48,共12页
Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and ... Traditional microstructure scale parameters have difficulty describing the structure and distribution of a roughmaterial’s surface morphology comprehensively and quantitatively. This study constructs hydrophilic and underwateroleophobic surfaces based on polyvinylidene fluoride (PVDF) using a chemical modification method, and the fractaldimension and multifractal spectrum are used to quantitatively characterize the microscopic morphology. A new contactangle prediction model for underwater oleophobic surfaces is established. The results show that the fractal dimension ofthe PVDF surface first increases and then decreases with the reaction time. The uniformity characterized by the multifractalspectrum was generally consistent with scanning electron microscope observations. The contact angle of water droplets onthe PVDF surface is negatively correlated with the fractal dimension, and oil droplets in water are positively correlated.When the fractal dimension is 2.0975, the new contact angle prediction model has higher prediction accuracy. Themaximum and minimum relative deviations of the contact angle between the theoretical and measured data are 18.20%and 0.72%, respectively. For water ring transportation, the larger the fractal dimension and spectral width of the materialsurface, the smaller the absolute value of the spectral difference, the stronger the hydrophilic and oleophobic properties, andthe better the water ring transportation stability. 展开更多
关键词 contact angle hydrophilic-oleophobic surface polyvinylidene fluoride MULTIFRACTAL prediction model
下载PDF
Improved contact angle measurement in multiphase lattice Boltzmann
10
作者 钟兴国 刘阳莎 +2 位作者 姚怡辰 何冰 闻炳海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期537-543,共7页
Contact angle is an essential parameter to characterize substrate wettability.The measurement of contact angle in experiment and simulation is a complex and time-consuming task.In this paper,an improved method of meas... Contact angle is an essential parameter to characterize substrate wettability.The measurement of contact angle in experiment and simulation is a complex and time-consuming task.In this paper,an improved method of measuring contact angle in multiphase lattice Boltzmann simulations is proposed,which can accurately obtain the real-time contact angle at a low temperature and larger density ratio.The three-phase contact point is determined by an extrapolation,and its position is not affected by the local deformation of flow field in the three-phase contact region.A series of simulations confirms that the present method has high accuracy and gird-independence.The contact angle keeps an excellent linear relationship with the chemical potential of the surface,so that it is very convenient to specify the wettability of a surface.The real-time contact angle measurement enables us to obtain the dynamic contact angle hysteresis on chemically heterogeneous surface,while the mechanical analyses can be effectively implemented at the moving contact line. 展开更多
关键词 contact angle measurement contact angle hysteresis mechanical analysis lattice Boltzmann method
原文传递
Numerical Stability and Accuracy of Contact Angle Schemes in Pseudopotential Lattice Boltzmann Model for Simulating Static Wetting and Dynamic Wetting
11
作者 Dongmin Wang Gaoshuai Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期299-318,共20页
There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity sch... There are five most widely used contact angle schemes in the pseudopotential lattice Boltzmann(LB)model for simulating the wetting phenomenon:The pseudopotential-based scheme(PB scheme),the improved virtualdensity scheme(IVD scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the fluid layer density above the wall(MPB-C scheme),the modified pseudopotential-based scheme with a ghost fluid layer constructed by using the weighted average density of surrounding fluid nodes(MPB-W scheme)and the geometric formulation scheme(GF scheme).But the numerical stability and accuracy of the schemes for wetting simulation remain unclear in the past.In this paper,the numerical stability and accuracy of these schemes are clarified for the first time,by applying the five widely used contact angle schemes to simulate a two-dimensional(2D)sessile droplet on wall and capillary imbibition in a 2D channel as the examples of static wetting and dynamic wetting simulations respectively.(i)It is shown that the simulated contact angles by the GF scheme are consistent at different density ratios for the same prescribed contact angle,but the simulated contact angles by the PB scheme,IVD scheme,MPB-C scheme and MPB-W scheme change with density ratios for the same fluid-solid interaction strength.The PB scheme is found to be the most unstable scheme for simulating static wetting at increased density ratios.(ii)Although the spurious velocity increases with the increased liquid/vapor density ratio for all the contact angle schemes,the magnitude of the spurious velocity in the PB scheme,IVD scheme and GF scheme are smaller than that in the MPB-C scheme and MPB-W scheme.(iii)The fluid density variation near the wall in the PB scheme is the most significant,and the variation can be diminished in the IVD scheme,MPB-C scheme andMPBWscheme.The variation totally disappeared in the GF scheme.(iv)For the simulation of capillary imbibition,the MPB-C scheme,MPB-Wscheme and GF scheme simulate the dynamics of the liquid-vapor interface well,with the GF scheme being the most accurate.The accuracy of the IVD scheme is low at a small contact angle(44 degrees)but gets high at a large contact angle(60 degrees).However,the PB scheme is the most inaccurate in simulating the dynamics of the liquid-vapor interface.As a whole,it is most suggested to apply the GF scheme to simulate static wetting or dynamic wetting,while it is the least suggested to use the PB scheme to simulate static wetting or dynamic wetting. 展开更多
关键词 Pseudopotential lattice Boltzmann model contact angle scheme static wetting dynamic wetting capillary imbibition
下载PDF
Wettability,reactivity,and interface structure in Mg/Ni system 被引量:1
12
作者 S.Terlicka N.Sobczak +2 位作者 Ł.Maj P.Darłak J.J.Sobczak 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期659-672,共14页
The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)us... The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system. 展开更多
关键词 Magnesium-based alloys Sessile drop tests Capillary purification procedure WETTABILITY REACTIVITY contact angle
下载PDF
Thin paints for durable and scalable radiative cooling 被引量:1
13
作者 Shanquan Liu Fei Zhang +3 位作者 Xingyu Chen Hongjie Yan Wei Chen Meijie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期176-182,I0006,共8页
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra... Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications. 展开更多
关键词 Radiative cooling Heat dissipation Solar reflectance Thermal emittance contact angle
下载PDF
Dynamic characteristics of high speed angular-contact ceramic ball bearing 被引量:3
14
作者 徐延忠 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2004年第3期319-323,共5页
The dynamic characteristics of a high speed angular-contact ceramic ball bearing are studied and compared with that of the steel ball bearing. According to rolling bearing analysis theory, the bearing dynamic equation... The dynamic characteristics of a high speed angular-contact ceramic ball bearing are studied and compared with that of the steel ball bearing. According to rolling bearing analysis theory, the bearing dynamic equations are established and are solved based on Hook-Jeeves's optimization theory on the computer. The results show that the bearing dynamic characteristics mainly depend on the rotational speed and ball material property at high speed. The bearing stiffness, initially decreases obviously and then increases with the increase of rotational speed. The ceramic ball bearing gains significant advantages over the steel ball bearing in high speed applications, such as lower contact stress, smaller deformation, less altering amount of contact angle, decreasing extent of variation of axial and radial stiffness and higher performance stability. 展开更多
关键词 contact angle DYNAMICS Optimization STEEL STIFFNESS
下载PDF
Effects of Steam Heat Treatment on the Surface Contact Angle of Chinese Fir 被引量:1
15
作者 高伟 罗建举 +3 位作者 石世亨 李荣册 卢佩 郭玺 《Agricultural Science & Technology》 CAS 2014年第1期127-131,共5页
The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatme... The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51&#176; to 124&#176; after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities. 展开更多
关键词 Chinese fir contact angle Steam heat treatment Surface roughness FTIR analysis SEM observation
下载PDF
Tribological properties of the beetle leg joints
16
作者 Konstantin NADEIN Alexander KOVALEV Stanislav N.GORB 《Friction》 SCIE EI CAS CSCD 2024年第12期2791-2807,共17页
Tribological properties of femoro-tibial leg joints in two beetles,darkling beetle Zophobas morio and Congo rose chafer Pachnoda marginata were studied.Very low friction of 0.004 was revealed by the direct measurement... Tribological properties of femoro-tibial leg joints in two beetles,darkling beetle Zophobas morio and Congo rose chafer Pachnoda marginata were studied.Very low friction of 0.004 was revealed by the direct measurements in the joint.It is assumed that semi-solid lubricant functioning as in technical bearings is one of the leading factors of the friction minimization.Dependence of the surface texture and physical chemical properties(hydrophobicity)on the cuticle friction was analysed.Contribution of the surface texture to the tribological properties of contacting surfaces was examined by the measurement in the tribosystem“contacting surface/glass”.It is supposed that coefficient of friction(COF)decreases with decrease of surface roughness.At the same time,no statistically significant correlation was found between the hydrophobicity of the surface and the value of the friction coefficient. 展开更多
关键词 BIOTRIBOLOGY friction ARTICULATION contact angle surface texture LUBRICATION
原文传递
Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam-surfactant co-injection
17
作者 Ben-Jie-Ming Liu Xuan-Tong Lei +1 位作者 Mohammadali Ahmadi Zhangxin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2457-2468,共12页
Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires... Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs. 展开更多
关键词 Clay minerals BITUMEN contact angle Interaction energy SURFACTANT Molecular dynamics
下载PDF
Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating
18
作者 O.N.Goncharova V.B.Bekezhanova 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1667-1686,共20页
The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.I... The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.In particular,the cases of local heating from below and distributed thermal load from the lateral walls are considered.The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation.A benzine–air system is considered as reference system.The variation in time of the contact angle is described for both heating modes.Under lateral heating,near-wall boundary layers emerge together with strong convection,whereas the local thermal load from the lower wall results in the formation of multicellular motion in the entire volume of the fluids and the appearance of transition regimes followed by a steady-state mode.The results of the present study can aid the design of equipment for thermal coating or drying and the development of methods for the formation of patterns with required structure and morphology. 展开更多
关键词 Thermocapillary convection two-phase system numerical modeling contact angle
下载PDF
Development of Modified Glasses by Transparent, Functional Hybrid Sol-Gel Nano-Ceramic Coatings, a Comparative Study
19
作者 Md. Barkat Ullah Yeasmin Akter +1 位作者 Khodeja Afrin Md. Saiful Quddus 《World Journal of Engineering and Technology》 2024年第1期170-184,共15页
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil... This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields. 展开更多
关键词 SOL-GEL Nano-Ceramic Coatings Self-Cleaning Glass Water contact Angle Optical Transmission
下载PDF
Determination of Contact Angle Hysteresis on Polyamide Surfaces
20
作者 Marcela Bachurova Jakub Wiener 《Journal of Chemistry and Chemical Engineering》 2012年第1期27-30,共4页
The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range... The wettability of the solid surface is often characterized by the contact angle of the liquid on the solid surface. However, it has long been found that the contact angle of liquid on a solid surface can take a range of values between two extremes: the advancing and the receding contact angles. The difference between the advancing and the receding contact angles is conventionally called contact angle hysteresis. Knowledge of contact angle hysteresis is essential to understand surface wettability and control surface wetting behavior. The wettability can be affected, for example, by the roughness of the solid surface. In our work, textile is used as macroscopic roughness surfaces, and smooth plate surface is used as well to determine contact angle hysteresis. The advancing and receding contact angles are measured on polyamide materials. 展开更多
关键词 Advancing contact angles receding contact angle surface energy contact angle hysteresis.
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部