To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the...Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.展开更多
In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control ...In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.展开更多
Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Fai...Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.展开更多
This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-r...This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control.展开更多
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to...Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.展开更多
With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing th...With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.展开更多
The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are c...In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.展开更多
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditio...In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditions (NASC) for the absolute stability of Lure direct control systems are given and some sufficient conditions are obtained展开更多
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is perform...A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.展开更多
The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single suppor...The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..展开更多
In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The cor...In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The corresponding results in references [3,5,6] and [7] are improved.展开更多
In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been...In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been constructed.Thus basing understanding of thecharacteristics of a control dynamics system on its measured procedure will simplify thedecision method of movement stability problems.展开更多
The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one....The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one.Both the inherent and the intentional time delays are included.The former mainly comes from signal acquiring and processing,computing,and applying the actuation force,and its value is fixed.The latter is introduced in the controller,and its value is actively adjustable.Firstly,the mechanical model is established and the frequency response equations are obtained.The regions of stability are delineated in the plane of control parameters.Secondly,the design scheme of control parameters is performed to help select the values of the feedback gain and time delay.Thirdly,the experimental studies are conducted.Effects of both negative and positive feedback control are investigated.Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption.Moreover,the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails.The experimental results are in good agreement with the theoretical predictions and numerical simulations.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side en...Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.展开更多
Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are stu...Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072161,U20A20331)China Postdoctoral Science Foundation(Grant No.2019T120398)+2 种基金State Key Laboratory of Automotive Safety and Energy of China(Grant No.KF2016)Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province(Grant No.QCCK2019-002)Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC 001).
文摘Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.
基金supported by the National Nature Science Foundation(U1664263)National Key R&D Program of China(2016YFB0101102)。
文摘In this paper,a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle.The design of control system adopts hierarchical structure.Unlike the previous control strategy,this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm.According to the driver’s operation commands(steering angle and speed),the steady state responses of the sideslip angle and yaw rate are obtained.Based on this,the reference model is built.Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand.Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces.Firstly,the optimization goal is built to minimize the actuator cost.Secondly,the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval.Beyond that,when the optimal allocation algorithm is not applied,a method of axial load ratio distribution is adopted.Finally,Car Sim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements.The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle is controlled within a small rang at the same time.Beyond that,based on the optimal distribution mode,the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire,which shows the effectiveness of the optimal distribution algorithm.
基金supported by Science and Technology Project of SGCC“Research on Flat Architecture and Implementation Technology of Security and Stability Control System in Ultra Large Power Grid”(52170221000U).
文摘Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.
基金supported by a grant from Research year of Inje University in 2008(0001200811700)
文摘This work proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. A 2-DOF vehicle model and Pacejka's tire model are used to evaluate the proposed map-based control method. The properties of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with a low friction coefficient. However, map-based control determines a compensated yaw moment to maintain the vehicle within the stability region,so the typical responses of vehicle enable to converge rapidly. The simulation results with sine and step steering show that map-based control provides better the tracking responsibility and control performance than model-referenced control.
基金supports from the National High Technology Research and Development Program of China (No. 2012AA062101)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-10-0770)+1 种基金the Program Granted for Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ11-0309)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.
基金Supported by the National Natural Science Foundation of China(No.61572254,61301103)
文摘With the occurrence of burst interference,bit error rate( BER) stability of the wireless communication system( WCS) always degrades significantly. To cope with it,a stability control algorithm is proposed,utilizing the stability theory of switched systems,which is specifically applicable for multi-parameter adaptive WCS with spectrum sensing ability,and it is capable of stabilizing BER within a reasonable range. Firstly,WCS is modeled as a switched system. Then,based on the multi-Lyapunov function,controlling rules are presented to enable the switched system to satisfy stable condition asymptotically. Finally,analysis and numerical simulation results demonstrate that the switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS with or without state feedback control in terms of stability performance.
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we investigate the absolute stability of the general Lurie control systems. The necessary and sufficient conditions for absolute stability are obtained. These conditions can be readily checked and are convenient in application.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
基金Project supported by the National Natural Science Foundation of China.
文摘In this paper, we transform n-th order Lure direct control systems into nonlinear systems with separating variables, and induce a concept for absolute stability of part arguments. The necessary and sufficient conditions (NASC) for the absolute stability of Lure direct control systems are given and some sufficient conditions are obtained
文摘A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.
文摘The working condition of the hydraulic support in working face can be divided into three kinds of situations in the following: roof fall and col,lapse with cavity, advancing support and supporting. Took single support with four-pole in Iongwall face to the dip as research object, control method was studied to avoid support instability in three situations mentioned above. Based on these researches, the major factors of influencing on support stability and its controlling measures were put forward. According to specific conditions of working face 1215(3), which is fully-mechanized and Iongwall face to the dip with great mining height in Zhangji Coal Mine, Huainan Mining Group, the effective measures was taken to control supports stability..
文摘In this paper, we give necessary and sufficient conditions for absolute stability of several classes of direct control systems, and discuss the absolute stability of the first canonical form of control system. The corresponding results in references [3,5,6] and [7] are improved.
文摘In this paper the definitions of generalized transfer functios of control system and itscontinuity are presented.Using generalized transfer function as a tool,a set of theorems fordeciding movement stability have been constructed.Thus basing understanding of thecharacteristics of a control dynamics system on its measured procedure will simplify thedecision method of movement stability problems.
基金supported by the State Key Program of National Natural Science Foundation of China(grant No. 11032009)National Natural Science Foundation of China(grant No.11272236)
文摘The traditional passive absorber is fully effective within a narrow and certain frequency band.To solve this problem,a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one.Both the inherent and the intentional time delays are included.The former mainly comes from signal acquiring and processing,computing,and applying the actuation force,and its value is fixed.The latter is introduced in the controller,and its value is actively adjustable.Firstly,the mechanical model is established and the frequency response equations are obtained.The regions of stability are delineated in the plane of control parameters.Secondly,the design scheme of control parameters is performed to help select the values of the feedback gain and time delay.Thirdly,the experimental studies are conducted.Effects of both negative and positive feedback control are investigated.Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption.Moreover,the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails.The experimental results are in good agreement with the theoretical predictions and numerical simulations.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(PPZY2015A046)supported by the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Gob-area roof rupture movement is a key disturbance factor for gob-side entry retaining.The characteristics of gob-area sequential roof collapse of overlying strata and superposed disturbance mechanism for gob-side entry retaining are obtained via physical simulation and theoretical analysis,in which the scope of disturbed strata is enlarged from main roof to fracture zone.The experiment reveals that as a working face advances,roof strata sequentially collapse from bottom to top and produce multiple disturbances to gob-side entry retaining.Key strata among the overlying strata control each collapse.Main roof subsidence is divided into three stages:flexure subsidence prior to rupture,rotational subsidence during rupture and compressive subsidence after rupture.The amounts of deformation evident in each of the three stages are 15%,55%and 30%,respectively.After the master stratum collapses,main roof subsidence approaches its maximum value.The final span of the key stratum determines the moment and cycling of gob-side entry retaining disturbances.Main roof subsidence influences the load on the filling wall.The sequential roof collapse of overlying strata results in fluctuations in the gob-side entry retaining deformation.Calculation formulae for the final span of the key stratum and the filling wall load are obtained via theoretical analysis.A control method for the stability of the gob-side entry retaining’s surrounding rock is proposed,which includes 3 measures:a“dual-layer”proactive anchorage support,roadside filling with dynamic strength matching and auxiliary support during disturbance.Finally,the gob-side entry retaining of the Xiaoqing mine E1403 working face is presented as an engineering case capable of verifying the validity of the research conclusions.
基金provided by the National Natural Science Foundation of China (Nos. 51504259 and 51234005)the Fundamental Research Funds for the Central Universities (No. 2010QZ06)
文摘Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support, Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements, A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China, The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion, It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing, The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlah and FLAC3DTM software, and practical support parameters of the S1203 return airway roof are determined, According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively, The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof,