期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
1
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving motion planning motion control Tube MPC ZONOTOPE
下载PDF
Neural Dynamics for Cooperative Motion Control of Omnidirectional Mobile Manipulators in the Presence of Noises: A Distributed Approach
2
作者 Yufeng Lian Xingtian Xiao +3 位作者 Jiliang Zhang Long Jin Junzhi Yu Zhongbo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1605-1620,共16页
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl... This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments. 展开更多
关键词 Cooperative motion control noise-tolerant zeroing neural network(NTZNN) omnidirectional mobile manipulator(OMM) repetitive motion planning
下载PDF
MPC-based Motion Planning and Control Enables Smarter and Safer Autonomous Marine Vehicles:Perspectives and a Tutorial Survey 被引量:4
3
作者 Henglai Wei Yang Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期8-24,共17页
Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource explorat... Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource exploration.Recent advances in the field of communication technologies,perception capability,computational power and advanced optimization algorithms have stimulated new interest in the development of AMVs.In order to deploy the constrained AMVs in the complex dynamic maritime environment,it is crucial to enhance the guidance and control capabilities through effective and practical planning,and control algorithms.Model predictive control(MPC)has been exceptionally successful in different fields due to its ability to systematically handle constraints while optimizing control performance.This paper aims to provide a review of recent progress in the context of motion planning and control for AMVs from the perceptive of MPC.Finally,future research trends and directions in this substantial research area of AMVs are highlighted. 展开更多
关键词 Autonomous marine vehicles(AMVs) model predictive control(MPC) motion control motion planning
下载PDF
Dynamics model of underwater robot motion control in 6 degrees of freedom 被引量:18
4
作者 李晔 刘建成 沈明学 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期456-459,共4页
In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general mo... In order to analyze underwater robot control system dynamics features, a system 6-DOF dynamics model was founded. Underwater robot linear and nonlinear hydrodynamics were analyzed by Taylor series, based on general motion equation. Special control system motion equation was deduced by cluster of inertial items and non-inertial items. For program convenience, motion equation matrix format was presented. Experimental principles of screw propellers, rudders and wings were discussed. Experimental data least-square curve fitting, interpolation and their corresponding traditional equation helped us to obtain the whole system dynamic response procedure. A series of simulation experiments show that the dynamics model is correct and reliable. The model can provide theory proof for analyzing underwater robot motion control system physics characters and provide a mathematic model for traditional control method. 展开更多
关键词 underwater robot dynamics model motion control
下载PDF
Modeling and simulation of a mini AUV in spatial motion 被引量:6
5
作者 王波 万磊 +1 位作者 徐玉如 秦再白 《Journal of Marine Science and Application》 2009年第1期7-12,共6页
Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathe... Accurate modeling and simulation of autonomous underwater vehicle (AUV) is essential for autonomous control and maneuverability research. In this paper, a mini AUV- "MAUV-Ⅱ" was researched and the nonlinear mathematic model of the AUV in spatial motion was derived based on momentum theorem. The forces acting on AUV were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with virtual reality technology, a motion simulation system was constructed. Considering the characteristic of "MAUV-Ⅱ ", the heading control and depth control were simulated by adopting S-surface control method. A long distance traveling simulation experiment based on target planning was also done. The simulation results show that the "MAUV-Ⅱ" has good spatial maneuverability, and verify the feasibility and reliability of control software. 展开更多
关键词 AUV kinematics model dynamics model motion control SIMULATION
下载PDF
CAN-based Synchronized Motion Control for Induction Motors 被引量:5
6
作者 Jun Ren Chun-Wen Li De-Zong Zhao 《International Journal of Automation and computing》 EI 2009年第1期55-61,共7页
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate... A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved. 展开更多
关键词 Multi-motor motion control system speed synchronization adjacent cross-coupling control sliding mode control CANbus.
下载PDF
Fuzzy logic for large mining bucket wheel reclaimer motion control—from an engineer's perspective 被引量:4
7
作者 LU Tienfu 《智能系统学报》 2011年第1期85-94,共10页
The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and... The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer's perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR. 展开更多
关键词 bucket wheel reclaimer modeling simulation motion control fuzzy logic
下载PDF
INTEGRATED CONTROL FOR VEHICLE YAW MOTION USING DOUBLE-COST-FUNCTION LQR 被引量:5
8
《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期228-233,共7页
关键词 In INTEGRATED CONTROL FOR VEHICLE YAW motion USING DOUBLE-COST-FUNCTION LQR
下载PDF
A learning-based flexible autonomous motion control method for UAV in dynamic unknown environments 被引量:3
9
作者 WAN Kaifang LI Bo +2 位作者 GAO Xiaoguang HU Zijian YANG Zhipeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1490-1508,共19页
This paper presents a deep reinforcement learning(DRL)-based motion control method to provide unmanned aerial vehicles(UAVs)with additional flexibility while flying across dynamic unknown environments autonomously.Thi... This paper presents a deep reinforcement learning(DRL)-based motion control method to provide unmanned aerial vehicles(UAVs)with additional flexibility while flying across dynamic unknown environments autonomously.This method is applicable in both military and civilian fields such as penetration and rescue.The autonomous motion control problem is addressed through motion planning,action interpretation,trajectory tracking,and vehicle movement within the DRL framework.Novel DRL algorithms are presented by combining two difference-amplifying approaches with traditional DRL methods and are used for solving the motion planning problem.An improved Lyapunov guidance vector field(LGVF)method is used to handle the trajectory-tracking problem and provide guidance control commands for the UAV.In contrast to conventional motion-control approaches,the proposed methods directly map the sensorbased detections and measurements into control signals for the inner loop of the UAV,i.e.,an end-to-end control.The training experiment results show that the novel DRL algorithms provide more than a 20%performance improvement over the state-ofthe-art DRL algorithms.The testing experiment results demonstrate that the controller based on the novel DRL and LGVF,which is only trained once in a static environment,enables the UAV to fly autonomously in various dynamic unknown environments.Thus,the proposed technique provides strong flexibility for the controller. 展开更多
关键词 autonomous motion control(AMC) deep reinforcement learning(DRL) difference amplify reward shaping
下载PDF
Development of FPGA Based NURBS Interpolator and Motion Controller with Multiprocessor Technique 被引量:2
10
作者 ZHAO Huan ZHU Limin +1 位作者 XIONG Zhenhua DING Han 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期940-947,共8页
The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the p... The high-speed computational performance is gained at the cost of huge hardware resource,which restricts the application of high-accuracy algorithms because of the limited hardware cost in practical use.To solve the problem,a novel method for designing the field programmable gate array(FPGA)-based non-uniform rational B-spline(NURBS) interpolator and motion controller,which adopts the embedded multiprocessor technique,is proposed in this study.The hardware and software design for the multiprocessor,one of which is for NURBS interpolation and the other for position servo control,is presented.Performance analysis and experiments on an X-Y table are carried out,hardware cost as well as consuming time for interpolation and motion control is compared with the existing methods.The experimental and comparing results indicate that,compared with the existing methods,the proposed method can reduce the hardware cost by 97.5% using higher-accuracy interpolation algorithm within the period of 0.5 ms.A method which ensures the real-time performance and interpolation accuracy,and reduces the hardware cost significantly is proposed,and it’s practical in the use of industrial application. 展开更多
关键词 NURBS interpolator FPGA-based interpolation MULTIPROCESSOR system on a programmable chip (SOPC) motion controller
下载PDF
Real-Time Iterative Compensation Framework for Precision Mechatronic Motion Control Systems 被引量:2
11
作者 Chuxiong Hu Ran Zhou +2 位作者 Ze Wang Yu Zhu Masayoshi Tomizuka 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1218-1232,共15页
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc... With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness. 展开更多
关键词 Precision motion control prediction model real-time iterative compensation trajectory tracking
下载PDF
Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal slidingmode control 被引量:3
12
作者 Shengdong Yu Hongtao Wu +2 位作者 Mingyang Xie Haiping Lin Jinyu Ma 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期410-426,共17页
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on... A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM. 展开更多
关键词 Cell puncture mechanism(CPM) Piezoelectric actuator(PEA) Robust motion control Fractional-order nonsingular terminal sliding mode(FONTSM) Time-delay estimation(TDE)
下载PDF
MOTION VELOCITY SMOOTH LINK IN HIGH SPEED MACHINING 被引量:9
13
作者 REN Kun FU Jianzhong CHEN Zichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期17-20,共4页
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a... To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly. 展开更多
关键词 High speed machining motion velocity link S-type control equation
下载PDF
AUV Modeling and Motion Control Strategy Design 被引量:1
14
作者 王芳 万磊 +1 位作者 苏玉民 徐玉如 《Journal of Marine Science and Application》 2010年第4期379-385,共7页
To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" s... To provide a suitable model for AUV simulation and control purposes, a general nonlinear dynamic model including a novel thruster hydrodynamics model was derived. Based on the modeling method, the "AUV-XX" simulation platform was established to carry out fundamental tests on its motion characteristics, stability, and controllability. A motion control strategy consisting of both position and speed control in a horizontal plane was designed for different task assignments of underwater vehicles. Combined control of heave and pitch was adopted to compensate for the reduction of vertical tunnel thrusters when the vehicle is moving at a high speed. An improved S-surface controller based on the capacitor plate model was developed with flexible gain selections made possible by different forms of restricting the error and changing the rate of the error. Simulation results show that the derived general mathematical model together with simulation platform can provide a test bed for fundamental tests of motion control. Additionally, the capacitor plate model S-surface control shows a good performance in guiding the vehicle to achieve the desired position and speed with sufficient accuracy. 展开更多
关键词 AUV general dynamic model hydrodynamics modeling simulation platform motion control
下载PDF
Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control 被引量:2
15
作者 郎琳 王剑 +1 位作者 韦庆 马宏绪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1970-1980,共11页
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi... A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods. 展开更多
关键词 trotting quadruped robots compliant landing joint torque optimization quadratic programming(QP) hybrid motion/force robust control
下载PDF
Synchronization motions of a two-link mechanism with an improved OPCL method
16
作者 韩清凯 赵雪彦 闻邦椿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第12期1561-1568,共8页
An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of d... An improved OPCL method is developed and applied to both small swing and giant rotation synchronization of a two-link mechanism. Transition processes of the two kinds of synchronization are discussed. Comparisons of different motion characteristics of the two-link synchronization and the effects of different control parameters on synchronous processes are investigated with numerical simulations. 展开更多
关键词 two-link mechanism controlled synchronization motions improved OPCL method
下载PDF
A measurement system of magnetism parameters for motion control
17
作者 王晓明 黄旭艳 雷涛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期297-301,共5页
Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts.The measurement unit presented in the paper can be applied to get the position and the speed feedback informatio... Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts.The measurement unit presented in the paper can be applied to get the position and the speed feedback information from the measurement of electromagnetism parameters,and can constitute the untouched feedback sensing unit in the closed-loop motion control,and it adapts to the diversified feedback control of electromagnetic actuator.The digital miniaturization meter,based on MSP430 single chip processor,which can do the multi-purpose measurement of Φ & B through the menu selection,can be used for the electromagnetic actuator's performance evaluation and improvement,and also the online quality control in production process.Both real-time data graph and data table can be displayed in the meter.The paper presents the system's structure,describes the principle,discusses the working modes,and shows the software flowchart and the measuring results. 展开更多
关键词 motion control magnetism measurement electromagnetic actuator SENSORLESS
下载PDF
Modeling and motion control simulation of tendon based parallel manipulator translation mechanism for sensor based high value waste processing
18
作者 黄赳 T. Pretz 卞正富 《Journal of Central South University》 SCIE EI CAS 2011年第6期1953-1961,共9页
A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state... A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm. 展开更多
关键词 municipal solid waste incineration tendon based parallel manipulator sensor based sorting motion control
下载PDF
Development of motion controller and its application in automatic TIG welding system
19
作者 董春 徐文立 +1 位作者 杨耕 富历新 《China Welding》 EI CAS 2003年第2期152-157,共6页
To develop a control system of cantilever arm for barrels welding, a motion controller has been developed to fit the welding procedure. The main research fields of the controller are: (1) finding effective measures to... To develop a control system of cantilever arm for barrels welding, a motion controller has been developed to fit the welding procedure. The main research fields of the controller are: (1) finding effective measures to protect the controller against interferences; (2) decreasing welding current gradually in order to alleviate arc craters which are harmful to seam forming and welding quality; (3) planning the arm velocity to minimize the influence of the arm swing on arc length regulator; (4) adopting adaptive control algorithm with PD feedback and velocity feed-forward to reduce the influence of system inertia and velocity planning on the system transient performance. 展开更多
关键词 motion controller arc crater welding current adaptive control
下载PDF
Dynamic Positioning Control of Surge−Pitch Coupled Motion for Small-Waterplane-Area Marine Structures
20
作者 HE Hua-cheng XU Sheng-wen +1 位作者 WANG Lei WANG Xue-feng 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期598-608,共11页
For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undes... For general dynamic positioning systems,controllers are mainly based on the feedback of motions only in the horizontal plane.However,for marine structures with a small water plane area and low metacentric height,undesirable surge and pitch oscillations may be induced by the thruster actions.In this paper,three control laws are investigated to suppress the induced pitch motion by adding pitch rate,pitch angle or pitch acceleration into the feedback control loop.Extensive numerical simulations are conducted with a semi-submersible platform for each control law.The influences of additional terms on surge−pitch coupled motions are analyzed in both frequency and time domain.The mechanical constraints of the thrust allocation and the frequency characters of external forces are simultaneously considered.It is concluded that adding pitch angle or pitch acceleration into the feedback loop changes the natural frequency in pitch,and its performance is highly dependent on the frequency distribution of external forces,while adding pitch rate into the feedback loop is always effective in mitigating surge−pitch coupled motions. 展开更多
关键词 surge−pitch coupled motion control small-waterplane-area marine structures actuation constraints frequency and time domain analysis
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部