The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th...The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.展开更多
To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno...To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.展开更多
The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship...The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.展开更多
The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five dif...The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.展开更多
The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the...The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the increase in cooling rate, the nucleation temperature (Tα,N) increases from 634.8 °C to 636.3 °C, the minimum temperature (Tα,Min) decreases from 631.9 °C to 630.7 °C, the nucleation undercooling (ΔTN) increases from 2.9 °C to 5.6 °C, the beginning temperature of the eutectic reaction (Teut,N) increases, the time of the eutectic reaction shortens, solidus temperature decreases from 546.0 °C to 541.4 °C, and solidification temperature range (ΔTS) increases by 6.1 °C. The increased nucleation rate (N&) is supposed to be the main reason for the increased?TN. Increased value (Teut,N?Teut,G) and shortened time of the eutectic reaction cause the change in the volume fraction and morphology of the second phase.展开更多
The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of pr...The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of primary grains during controlled diffusion solidification(CDS) of Al-8Si alloy were investigated by using simulation and calculation.The results indicate that a lower mixing temperature is helpful for achieving more supercooled microscale Al-rich pockets in the mixture,and increasing the width and supercooling degree of supercooling zone in the Al-rich pockets,and thus,the nucleation rate.The nuclei grow up in nondendritic mode,resulting in spheroidal,at least,nondendritic grains.In a successful CDS,the superheat degrees of the two precursor melts should be limited within several degrees,and it is not necessary to extra stipulate the superheat degree of target alloy melt(Al-8Si) when the requirement about Gibbs energies of the three melts is matched.Subsequent observation on casting microstructures shows that the employed simulation and calculation processes are reasonable and the achieved results are reliable.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the ...An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.展开更多
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h...In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.展开更多
Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had b...Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.展开更多
Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of...Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of cooling rate on the solidification of the 2304 duplex stainless steel (DSS). The macro and micro structures of the 2304 DSS were investigated. Small equiaxed grains are obtained in chromite sand mould sample with a lower pouring temperature and a higher cooling rate, whereas coarse columnar and equiaxed grains are found in silica sand and refractory powder mould samples. The size of austenite phase is significantly increased with decreasing cooling rate, while the ferrite phase content ranging from 51.6% to 53.9% does not change obviously. In addition, the linear contraction of the 2304 DSS decreases from 2.34% to 1.09% when the mean cooling rate above 1,173 K increases from 0.99 K·s-1 to 3.66 K·s-1.展开更多
This study aims to investigate the primary carbides precipitation in H13 steel solidified at relatively high cooling rates,ranging from 300 to 6,000℃·min^-1,based on in situ observations with a high temperature ...This study aims to investigate the primary carbides precipitation in H13 steel solidified at relatively high cooling rates,ranging from 300 to 6,000℃·min^-1,based on in situ observations with a high temperature confocal laser scanning microscope.In the cooling rate range investigated,the solidification microstructure becomes more refined as cooling rate increases and the relationship between the secondary dendrite arm spacing(SDAS),λ2,and cooling rate,.T,can be expressed asλ2=128.45.T-0.124.Regardless of cooling rates,two kinds of primary carbides,i.e.,the Mo-Cr-rich and V-rich carbides,are precipitated along the interdendritic region and most of them are the Mo-Cr-rich carbides.The morphology of Mo-Cr-rich carbide is not obviously influenced by the cooling rate,but that of V-rich carbide is obviously affected.The increasing cooling rate markedly refines the primary carbides and reduces their volume fractions,but their precipitations cannot be inhibited even when the cooling rate is increased to 6,000℃·min^-1.Besides,the segregation ratios(SRs)of the carbides forming elements are not obviously affected by the cooling rate.However,compared with the conventionally cast ingot,the SDAS and primary carbides in the steel solidified at the investigated cooling rates are much finer,morphologies of the carbides have changed significantly,and SRs of the carbides forming elements are markedly greater.The variation of primary carbide characteristics with cooling rate is mainly due to the change in SDAS.展开更多
Preparation of semisolid slurry using a cooling slope is increasingly becoming popular,primarily because of the simplicity in design and ease control of the process.In this process,liquid alloy is poured down an incli...Preparation of semisolid slurry using a cooling slope is increasingly becoming popular,primarily because of the simplicity in design and ease control of the process.In this process,liquid alloy is poured down an inclined surface which is cooled from underneath.The cooling enables partial solidification and the incline provides the necessary shear for producing semisolid slurry.However,the final microstructure of the ingot depends on several process parameters such as cooling rate,incline angle of the cooling slope,length of the slope and initial melt superheat.In this work,a CFD model using volume of fluid(VOF) method for simulating flow along the cooling slope was presented.Equations for conservation of mass,momentum,energy and species were solved to predict hydrodynamic and thermal behavior,in addition to predicting solid fraction distribution and macrosegregation.Solidification was modeled using an enthalpy approach and a volume averaged technique for the different phases.The mushy region was modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed/fragmented grains.The alloy chosen for the study was aluminum alloy A356,for which adequate experimental data were available in the literature.The effects of two key process parameters,namely the slope angle and the pouring temperature,on temperature distribution,velocity distribution and macrosegregation were also studied.展开更多
The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling ...The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.展开更多
Six alloys with different compositions of Al 0.1%Sc, Al 0.3%Sc, Al 0.3%Zr, Al 0.1% Sc 0.1%Zr, Al 0.3%Sc 0.1%Zr and Al 0.3%Sc 0.3%Zr were prepared by casting in a wedge shaped copper mould. The hardness test, microstru...Six alloys with different compositions of Al 0.1%Sc, Al 0.3%Sc, Al 0.3%Zr, Al 0.1% Sc 0.1%Zr, Al 0.3%Sc 0.1%Zr and Al 0.3%Sc 0.3%Zr were prepared by casting in a wedge shaped copper mould. The hardness test, microstructure observation, and DSC thermal analysis were applied to fully investigate the solidification behavior of the wedge tip (whose cooling rate is 1 000 K/s) and the top surface (cooling rate 100 K/s) of each casting. The results show that the cast structures in the hypoeutectic region of Al Sc alloys are slightly affected by cooling rates during the solidification. In the case of hypereutectic alloy of Al 0.3%Sc 0.3%Zr , the cast grains were remarkably refined under the condition of a 100 K/s cooling rate, however, under a 1 000 K/s cooling rate condition, solute atoms contribute nothing to the grain refinement, due to the eutectic concentration becomes higher. The hardness can be improved to a greater degree by Sc single addition, compared to single Zr addition, but it can be improved even greater when Sc added together with Zr. It is sensitive to cooling rate, the higher the cooling rate, the greater the hardness. By combining the results of TEM examination and DSC analysis, it can be seen that a supersaturated Al solid solution forms during the solidification, and the solubility of Sc in Al solution can be improved by increasing the cooling rate.展开更多
Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling ...Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling rates were studied by DSC,optical microscope,SEM and TEM.The results show that silicon phase is nucleated on SiC whiskers.With the increase of cooling rate,the degree of undercooling increases in the composites as well as in the alloys.The increase of cooling rate leads to a reduction in the size of eutectic Al-Si and also changes its morphology from short stick to equiaxed.However,the change of primary Si is complex.The primary Si size is refined,and then coarsened with increasing cooling rate.The primary Si morphology of composites changes from agglomerate to stick.展开更多
Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such prope...Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.展开更多
To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The e...To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The experimental results show that the matrix phase of α-Mg dendrites is first generated at 596℃ during the solidification process,then the eutectic phases of Al_(2)Ca and Mg_(17)Al_(12) are formed at 518 and 447℃,respectively,and the solidification is terminated at 436℃.In the process of solidification,the seaweed dendrites of α-Mg get coarser and are gradually transformed into the global dendrites;besides,the secondary dendrite arms spacing(SDAS)of α-Mg as well as the solid fraction are both increased,while the increasing rate of SDAS of α-Mg and the solid fraction in the temperature region of 600-550℃ is faster than that in the temperature region of 550-436℃.And a power function relationship can be used to illustrate the change of the SDAS and the solid fraction with the temperature of solidification.展开更多
The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved...The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized(〉 2 μm) inclusions and small-sized(≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 μm was not affected when the cooing rate was less than or equal to 6 K·s^-1 because inclusion precipitation was suppressed by the increased cooling rate.展开更多
The rapid solidification processes of liquid Cu56Zr44 alloys at different cooling rates (γ) were simulated by a molecular dynamics (MD) method. In order to assess the influence of cooling rate on the clustering t...The rapid solidification processes of liquid Cu56Zr44 alloys at different cooling rates (γ) were simulated by a molecular dynamics (MD) method. In order to assess the influence of cooling rate on the clustering tendency and degree towards icosahedrons, a ten-indices' cluster-type index method was suggested to characterize the local atomic structures in the super-cooled liquid and the rapidly solidified solid. And their clustering and ordering degrees as well as the packing density of ieosahedral clusters were also evaluated by an icosahedral clustering degree (fI), the chemical order parameter (ηαβ) and densification coefficients (D0, DI and DIS), respectively. Results show that the main local atomic configurations in Cu56Zr44 alloy system are Z12 clusters centered by Cu, and most of which are (12 0 12 0 0 0 0 0 0 0) standard icosahedra and (12 0 8 0 0 0 2 2 0 0) as well as (12 2 8 2 0 0 0 0 0 0) defective icosahedra. Below glass transition temperature (Tg), these icosahedral clusters will be coalesced to various icosahedral medium-range orders (IMROs) by IS linkages, namely, icosahedral bond, and their number N, size n, order parameter ηαβ as well as spatial distributions vary with y. As the cooling rate exceeds the critical value (γc) at which a glassy transition can take place, a lower cooling rate, e.g., γ1=10^1K/ns, is demonstrated to be favorable to uplift the number of icosahedra and enlarge the size of IMROs compared with the higher cooling rates, e.g., γ5=10^5 K/ns, and their packing density and clustering degree towards icosahedra in the rapidly solidified solid can also benefit from the slow cooling process.展开更多
文摘The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.
基金supported by the National Natural Science Foundation of China(Grants 52304001,52227804)State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum,Beijing(No.PRE/open-2310)。
文摘To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.
文摘The effects of cooling rates on solidification behaviors,segregation characteristics and tensile property of GH4151 alloy were investigated using microstructure characterization and tensile test.Firstly,a relationship between the secondary dendrite arm spacing and cooling rate was determined and it was confirmed to be valid.Secondly,it can be found from microstructure observations that the morphology of(Nb,Ti)C carbides transits from blocky and script type to fine script type and spotty type,and the refinedγ'phase was observed due to decrease of segregation with increasing cooling rates.Thirdly,the solidification microstructures of the industrial-scale samples were analyzed.The morphology ofηphase changes from indistinguishable shape,fine needle-like shape to large block-like shape with increasing ingot diameter.As a result,the mechanical properties of alloy decrease due to increase of brittle precipitations.The experimental results show that the precipitation behavior of GH4151 is affected by segregation degree of elements,and the segregation degree is determined by solute distribution process and solid back-diffusion process.
基金Projects (2005CB724105,2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010,51171089) supported by the National Natural Science Foundation of ChinaProjects (2009ZX04006-041-04,2011ZX04014-052) supported by the Important National Science&Technology Specific,China
文摘The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15 Fe alloy during solidification process were studied.To obtain different cooling rates,the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method.The results show that at higher cooling rates,the primary α(Al) dendrite nucleation temperature,eutectic reaction temperature and solidus temperature shift to lower temperatures.Besides,with increasing cooling rate from 0.19 ℃/s up to 6.25 ℃/s,the secondary dendritic arm spacing decreases from 68 μm to 20 μm,and the primary dendritic volume fraction declines by approximately 5%.In addition,it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution.It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology,and decreasing block or lamella shape eutectic silicon.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProjects(20120073120011,20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of the cooling rate ranging from 1.4 °C/s to 3.5 °C/s on the solidification behavior of the sand-cast Mg?10Gd?3Y?0.4Zr alloy was studied by computer aided cooling curve analysis (CA-CCA). With the increase in cooling rate, the nucleation temperature (Tα,N) increases from 634.8 °C to 636.3 °C, the minimum temperature (Tα,Min) decreases from 631.9 °C to 630.7 °C, the nucleation undercooling (ΔTN) increases from 2.9 °C to 5.6 °C, the beginning temperature of the eutectic reaction (Teut,N) increases, the time of the eutectic reaction shortens, solidus temperature decreases from 546.0 °C to 541.4 °C, and solidification temperature range (ΔTS) increases by 6.1 °C. The increased nucleation rate (N&) is supposed to be the main reason for the increased?TN. Increased value (Teut,N?Teut,G) and shortened time of the eutectic reaction cause the change in the volume fraction and morphology of the second phase.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFB2001800)。
文摘The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of primary grains during controlled diffusion solidification(CDS) of Al-8Si alloy were investigated by using simulation and calculation.The results indicate that a lower mixing temperature is helpful for achieving more supercooled microscale Al-rich pockets in the mixture,and increasing the width and supercooling degree of supercooling zone in the Al-rich pockets,and thus,the nucleation rate.The nuclei grow up in nondendritic mode,resulting in spheroidal,at least,nondendritic grains.In a successful CDS,the superheat degrees of the two precursor melts should be limited within several degrees,and it is not necessary to extra stipulate the superheat degree of target alloy melt(Al-8Si) when the requirement about Gibbs energies of the three melts is matched.Subsequent observation on casting microstructures shows that the employed simulation and calculation processes are reasonable and the achieved results are reliable.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
文摘An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.
基金financially supported by the National Science and Technology Major Project of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2017ZX04014001)
文摘In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.
基金supported by the school fund of Nanjing University of Information Science and Technol ogy
文摘Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.
基金supported by the National Natural Science Foundation of China (Grant No. 50904044)
文摘Cooling rate is a key factor that can drastically affect the phase transformation and thermal stress of duplex stainless steels. Therefore, in this research, different sand moulds were used to explore the influence of cooling rate on the solidification of the 2304 duplex stainless steel (DSS). The macro and micro structures of the 2304 DSS were investigated. Small equiaxed grains are obtained in chromite sand mould sample with a lower pouring temperature and a higher cooling rate, whereas coarse columnar and equiaxed grains are found in silica sand and refractory powder mould samples. The size of austenite phase is significantly increased with decreasing cooling rate, while the ferrite phase content ranging from 51.6% to 53.9% does not change obviously. In addition, the linear contraction of the 2304 DSS decreases from 2.34% to 1.09% when the mean cooling rate above 1,173 K increases from 0.99 K·s-1 to 3.66 K·s-1.
基金the National Natural Science Foundation of China(Grant No.51904146)the Doctor Start-up Fund of Liaoning Province(Grant No.2019-BS-125)the National Key Laboratory of Marine Engineering of China(Grant No.SKLMEA-USTL-201707)。
文摘This study aims to investigate the primary carbides precipitation in H13 steel solidified at relatively high cooling rates,ranging from 300 to 6,000℃·min^-1,based on in situ observations with a high temperature confocal laser scanning microscope.In the cooling rate range investigated,the solidification microstructure becomes more refined as cooling rate increases and the relationship between the secondary dendrite arm spacing(SDAS),λ2,and cooling rate,.T,can be expressed asλ2=128.45.T-0.124.Regardless of cooling rates,two kinds of primary carbides,i.e.,the Mo-Cr-rich and V-rich carbides,are precipitated along the interdendritic region and most of them are the Mo-Cr-rich carbides.The morphology of Mo-Cr-rich carbide is not obviously influenced by the cooling rate,but that of V-rich carbide is obviously affected.The increasing cooling rate markedly refines the primary carbides and reduces their volume fractions,but their precipitations cannot be inhibited even when the cooling rate is increased to 6,000℃·min^-1.Besides,the segregation ratios(SRs)of the carbides forming elements are not obviously affected by the cooling rate.However,compared with the conventionally cast ingot,the SDAS and primary carbides in the steel solidified at the investigated cooling rates are much finer,morphologies of the carbides have changed significantly,and SRs of the carbides forming elements are markedly greater.The variation of primary carbide characteristics with cooling rate is mainly due to the change in SDAS.
文摘Preparation of semisolid slurry using a cooling slope is increasingly becoming popular,primarily because of the simplicity in design and ease control of the process.In this process,liquid alloy is poured down an inclined surface which is cooled from underneath.The cooling enables partial solidification and the incline provides the necessary shear for producing semisolid slurry.However,the final microstructure of the ingot depends on several process parameters such as cooling rate,incline angle of the cooling slope,length of the slope and initial melt superheat.In this work,a CFD model using volume of fluid(VOF) method for simulating flow along the cooling slope was presented.Equations for conservation of mass,momentum,energy and species were solved to predict hydrodynamic and thermal behavior,in addition to predicting solid fraction distribution and macrosegregation.Solidification was modeled using an enthalpy approach and a volume averaged technique for the different phases.The mushy region was modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed/fragmented grains.The alloy chosen for the study was aluminum alloy A356,for which adequate experimental data were available in the literature.The effects of two key process parameters,namely the slope angle and the pouring temperature,on temperature distribution,velocity distribution and macrosegregation were also studied.
文摘The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones.
文摘Six alloys with different compositions of Al 0.1%Sc, Al 0.3%Sc, Al 0.3%Zr, Al 0.1% Sc 0.1%Zr, Al 0.3%Sc 0.1%Zr and Al 0.3%Sc 0.3%Zr were prepared by casting in a wedge shaped copper mould. The hardness test, microstructure observation, and DSC thermal analysis were applied to fully investigate the solidification behavior of the wedge tip (whose cooling rate is 1 000 K/s) and the top surface (cooling rate 100 K/s) of each casting. The results show that the cast structures in the hypoeutectic region of Al Sc alloys are slightly affected by cooling rates during the solidification. In the case of hypereutectic alloy of Al 0.3%Sc 0.3%Zr , the cast grains were remarkably refined under the condition of a 100 K/s cooling rate, however, under a 1 000 K/s cooling rate condition, solute atoms contribute nothing to the grain refinement, due to the eutectic concentration becomes higher. The hardness can be improved to a greater degree by Sc single addition, compared to single Zr addition, but it can be improved even greater when Sc added together with Zr. It is sensitive to cooling rate, the higher the cooling rate, the greater the hardness. By combining the results of TEM examination and DSC analysis, it can be seen that a supersaturated Al solid solution forms during the solidification, and the solubility of Sc in Al solution can be improved by increasing the cooling rate.
文摘Al-18Si alloy reinforced with 15%,20% and 25%(volume fraction) SiC whiskers were prepared by squeeze casting technique and the solidification behavior and microstructure of as-prepared composites at different cooling rates were studied by DSC,optical microscope,SEM and TEM.The results show that silicon phase is nucleated on SiC whiskers.With the increase of cooling rate,the degree of undercooling increases in the composites as well as in the alloys.The increase of cooling rate leads to a reduction in the size of eutectic Al-Si and also changes its morphology from short stick to equiaxed.However,the change of primary Si is complex.The primary Si size is refined,and then coarsened with increasing cooling rate.The primary Si morphology of composites changes from agglomerate to stick.
基金The authors are grateful to FAPESP-São Paulo Research Foundation,Brazil(2014/50502-5 and 2017/16058-9)Capes-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Brazil(Funding code 001)and CNPq-National Council for Scientific and Technological Development(406239/2018-5)for their financial supportThe authors would like to thank the Brazilian Nanotechnology National Laboratory–LNNano for allowing us to use its facilities.
文摘Biodegradable Zn-based alloys, particularly Zn-Mg alloys with the addition of alloying elements, have been intensively investigated aiming to improve both mechanical properties and corrosion behavior. Since such properties are strongly dependent on the alloy microstructure, any evaluation should commence on understanding the conditions influencing its formation. In this study, the effect of the solidification cooling rate on the microstructural evolution of Zn-1 wt.%Mg-(0.5 wt.%Ca, 0.5 wt.%Mn) alloys during transient solidification was investigated. The results show that the microstructures of both alloys have three phases in common: η-Zn dendritic matrix, intermetallic compounds(IMCs) Zn11Mg2, and Zn2 Mg in the eutectic mixture. MnZn9 and two Ca-bearing phases(CaZn11 and CaZn13) are associated with Mn and Ca additions, respectively. These additions are shown to refine the dendritic matrix and the eutectic mixture as compared to the Zn-1 wt.%Mg alloy. A correlation between cooling rate, dendritic or eutectic spacings was developed, thus permitting experimental growth laws to be proposed. Additionally, hardness tests were performed to evaluate the effects of additions of Ca and Mn. Experimental correlations between Vickers microhardness and secondary dendritic spacings were proposed, showing that the microstructural refinement and characteristic Ca and Mn based IMCs induce an increase in hardness as compared to the binary alloy.
基金Funded by the Ph D Research Startup Foundation of Jining University(No.2017BSZX02)。
文摘To understand the solidification pathway and microstructure evolution of Mg-9Al-2Ca alloy,the cooling curve of the alloy solidified under furnace cooling was measured and the water-quenched samples were observed.The experimental results show that the matrix phase of α-Mg dendrites is first generated at 596℃ during the solidification process,then the eutectic phases of Al_(2)Ca and Mg_(17)Al_(12) are formed at 518 and 447℃,respectively,and the solidification is terminated at 436℃.In the process of solidification,the seaweed dendrites of α-Mg get coarser and are gradually transformed into the global dendrites;besides,the secondary dendrite arms spacing(SDAS)of α-Mg as well as the solid fraction are both increased,while the increasing rate of SDAS of α-Mg and the solid fraction in the temperature region of 600-550℃ is faster than that in the temperature region of 550-436℃.And a power function relationship can be used to illustrate the change of the SDAS and the solid fraction with the temperature of solidification.
基金financially supported by the National Basic Research Program of China (No. 2011CB012900)
文摘The effect of solidification cooling rate on the size and distribution of inclusions in 12%Cr stainless steel was investigated. A wide range of solidification cooling rates(from 0.05 to 106 K·s^-1) was achieved using various solidification processes, including conventional casting, laser remelting, and melt spinning. The size and distribution of inclusions in the steel were observed and statistically collected. For comparison, mathematical models were used to calculate the sizes of inclusions at different solidification cooling rates. Both the statistical size determined from observations and that predicted from calculations tended to decrease with increasing cooling rate; however, the experimental and calculated results did not agree well with each other at excessively high or low cooling rate. The reasons for this discrepancy were theoretically analyzed. For the size distribution of inclusions, the effect of cooling rate on the number densities of large-sized(〉 2 μm) inclusions and small-sized(≤ 2 μm) inclusions were distinct. The number density of inclusions larger than 1 μm was not affected when the cooing rate was less than or equal to 6 K·s^-1 because inclusion precipitation was suppressed by the increased cooling rate.
基金Project(51071065)supported by the National Natural Science Foundation of ChinaProject(20100161110001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The rapid solidification processes of liquid Cu56Zr44 alloys at different cooling rates (γ) were simulated by a molecular dynamics (MD) method. In order to assess the influence of cooling rate on the clustering tendency and degree towards icosahedrons, a ten-indices' cluster-type index method was suggested to characterize the local atomic structures in the super-cooled liquid and the rapidly solidified solid. And their clustering and ordering degrees as well as the packing density of ieosahedral clusters were also evaluated by an icosahedral clustering degree (fI), the chemical order parameter (ηαβ) and densification coefficients (D0, DI and DIS), respectively. Results show that the main local atomic configurations in Cu56Zr44 alloy system are Z12 clusters centered by Cu, and most of which are (12 0 12 0 0 0 0 0 0 0) standard icosahedra and (12 0 8 0 0 0 2 2 0 0) as well as (12 2 8 2 0 0 0 0 0 0) defective icosahedra. Below glass transition temperature (Tg), these icosahedral clusters will be coalesced to various icosahedral medium-range orders (IMROs) by IS linkages, namely, icosahedral bond, and their number N, size n, order parameter ηαβ as well as spatial distributions vary with y. As the cooling rate exceeds the critical value (γc) at which a glassy transition can take place, a lower cooling rate, e.g., γ1=10^1K/ns, is demonstrated to be favorable to uplift the number of icosahedra and enlarge the size of IMROs compared with the higher cooling rates, e.g., γ5=10^5 K/ns, and their packing density and clustering degree towards icosahedra in the rapidly solidified solid can also benefit from the slow cooling process.