Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable c...Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.展开更多
In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the s...In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.展开更多
The existing active queue management (AQM) algorithm acts on subscribers and edge routers only, it does not support differentiate-serve (Diffserv) quality of service (QoS), while the existing diffserv QoS has no...The existing active queue management (AQM) algorithm acts on subscribers and edge routers only, it does not support differentiate-serve (Diffserv) quality of service (QoS), while the existing diffserv QoS has not considered the link capacities between edge routers and connected core routers. When a core router in a two layers’ network experiences congestion, the connected edge routers have no ability to adjust their access data rates. Thus, it is difficult to achieve the congestion control for the large scale network with many edge routers and core routers. To solve these problems, two difffserve AQM algorithms are proposed for the congestion control of multilayer network. One diffserv AQM algorithm implements fair link capacities of edge routers, and the other one implements unequal link capacities of edge routers, but it requires the core routers to have multi-queues buffers and Diffserv AQM to support. The proposed algorithms achieve the network congestion control by operating AQM parameters on the conditions of proposed three theorems for core and edge routers. The dynamic simulation results demonstrate the proposed control algorithms for core and edge routers to be valid.展开更多
针对三冗余机电静压伺服系统的研制需求,设计了基于双核全可编程片上系统(All Programmable System on Chip,APSoC)技术的多总线三冗余伺服控制驱动器。通过数字总线实现子控制驱动模块之间信息共享,采用IP核技术实现硬件加速、多电机...针对三冗余机电静压伺服系统的研制需求,设计了基于双核全可编程片上系统(All Programmable System on Chip,APSoC)技术的多总线三冗余伺服控制驱动器。通过数字总线实现子控制驱动模块之间信息共享,采用IP核技术实现硬件加速、多电机高速并行控制;通过试验验证多电机控制的同步性能和测量细节全还原技术;采用多种温度、压力传感器、过流保护电路等构建伺服系统健康网络体系,结合余度表决和故障切除逻辑搭建了三冗余控制驱动平台,对多任务的不同实时性需求分配任务等级,双核协同工作,研制的产品实物通过了系统验证。展开更多
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under grant no.(KEP-Msc-36-135-38).
文摘Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)National Natural Science Foundation of China No.51827901 and U2013603
文摘In situ pressure-preserved coring(IPP-Coring)technology is considered one of the most efficient methods for assessing resources.However,seal failure caused by the rotation of pressure controllers greatly affects the success of pressure coring.In this paper,a novel spherical-cylindrical shell pressure controller was proposed.The finite element analysis model was used to analyze the stress distribution and deformation characteristics of the pressure controller at different rotation angles.The seal failure mechanism caused by the rotation of the pressure controller was discussed.The stress deviation rate was defined to quantitatively characterize the stress concentration.Based on the test equipment designed in this laboratory,the ultimate bearing strength of the pressure controller was tested.The results show that the rotation of the valve cover causes an increase in the deformation on its lower side.Furthermore,the specific sealing pressure in the weak zone is greatly reduced by a statistically significant amount,resulting in seal failure.When the valve cover rotates 5°around the major axis,the stress deviation rate is-92.6%.To prevent rotating failure of the pressure controller,it is necessary to control the rotation angle of the valve cover within 1°around the major axis.The results of this research can help engineers reduce failure-related accidents,provide countermeasures for pressure coring,and contribute to the exploration and evaluation of deep oil and gas resources.
基金supported by the Beijing Natural Science Foundation (4102050)NSFC-KOSEF Joint Research Project of China and Korea(60811140343), and the CDSN, GIST.
文摘The existing active queue management (AQM) algorithm acts on subscribers and edge routers only, it does not support differentiate-serve (Diffserv) quality of service (QoS), while the existing diffserv QoS has not considered the link capacities between edge routers and connected core routers. When a core router in a two layers’ network experiences congestion, the connected edge routers have no ability to adjust their access data rates. Thus, it is difficult to achieve the congestion control for the large scale network with many edge routers and core routers. To solve these problems, two difffserve AQM algorithms are proposed for the congestion control of multilayer network. One diffserv AQM algorithm implements fair link capacities of edge routers, and the other one implements unequal link capacities of edge routers, but it requires the core routers to have multi-queues buffers and Diffserv AQM to support. The proposed algorithms achieve the network congestion control by operating AQM parameters on the conditions of proposed three theorems for core and edge routers. The dynamic simulation results demonstrate the proposed control algorithms for core and edge routers to be valid.
文摘针对三冗余机电静压伺服系统的研制需求,设计了基于双核全可编程片上系统(All Programmable System on Chip,APSoC)技术的多总线三冗余伺服控制驱动器。通过数字总线实现子控制驱动模块之间信息共享,采用IP核技术实现硬件加速、多电机高速并行控制;通过试验验证多电机控制的同步性能和测量细节全还原技术;采用多种温度、压力传感器、过流保护电路等构建伺服系统健康网络体系,结合余度表决和故障切除逻辑搭建了三冗余控制驱动平台,对多任务的不同实时性需求分配任务等级,双核协同工作,研制的产品实物通过了系统验证。