Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degra...Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
'Giant' Cd Se/Cd S core/shell nanocrystals(NCs) were synthesized with thick Cd S shell(15 monolayers), and the x-ray diffraction(XRD) measurement indicates there is a zinc blende phase in the thick Cd S shell,...'Giant' Cd Se/Cd S core/shell nanocrystals(NCs) were synthesized with thick Cd S shell(15 monolayers), and the x-ray diffraction(XRD) measurement indicates there is a zinc blende phase in the thick Cd S shell, whereas it transformed into wurtzite phase under 5 min radiation with a 400 nm, 594 μJ∕cm2femtosecond(fs) laser beam.The evolution of the NCs’ spontaneous emission under the fs laser radiation was recorded with a Hamamatsu streak camera. The as-synthesized NCs exhibit an amplified spontaneous emission(ASE) at 530 nm, which comes from a bulk-like Cd S shell due to the interfacial potential barrier, which could slow down the relaxation of holes from the shell to the core. After being annealed by an fs laser, the ASE of the g-NCs is transferred from a bulk-like Cd S shell to a quantum-confined Cd Se core because the phase transformation determined with the XRD measurement could remove the interfacial barrier. Besides the ASE at 643 nm, two shorter-wavelength ASE peaks at 589 and 541 nm, corresponding to optical transitions of the second(1P) and third(1D) electron quantization shells of the Cd Se core, also appear, thus indicating that Auger recombination is effectively suppressed.展开更多
Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulati...Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.展开更多
Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems ...Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.展开更多
A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists ...A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.展开更多
A one-pot/three-step synthetic scheme was developed for phase-pure epitaxy of CdS shells on zinc-blende CdSe nanocrystals to yield shells with up to sixteen monolayers. The key parameters for the epitaxy were identifi...A one-pot/three-step synthetic scheme was developed for phase-pure epitaxy of CdS shells on zinc-blende CdSe nanocrystals to yield shells with up to sixteen monolayers. The key parameters for the epitaxy were identified, including the core nanocrystal concentration, solvent type/composition, quality of the core nanocrystals, epitaxial growth temperature, type/concentration of ligands, and composition of the precursors. Most of these key parameters were not influential when the synthetic goal was thin-shell CdSe/CdS core/shell nanocrystals. The finalized synthetic scheme was reproducible at an almost quantitative level in terms of the crystal structure, shell thickness, and optical properties.展开更多
A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate ...A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate in an aqueous medium yielded CdS/TiO2 nanocrystals composites with core/shell structure. The thickness of TiO2 layer with smooth interface could be easily controlled via changing the concentration of the precursors and the time of irradiation. The core/shell nanocrysrals were characterized by X-ray diffraction, transmission electron microscope and UV-vis spectrometry techniques. The prepared semiconductor composites with particular band structure present appealing properties especially in photochemical activity.展开更多
We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to ...We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6—10.展开更多
We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-int...We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-intensity ultraviolet (UV) light illumination. The resulting photo-induced dissociation of S2O2- ions conveniently triggers the formation of critical two-dimensional CdS epitaxy on the CdTe surface at room temperature, as opposed to initiating the growth of individual CdS core-only nanocrystals. This controlled colloidal hetero-epitaxy leads to a substantial increase in the photoluminescence (PL) quantum yield (QY) of the shelled nanocrystals in water (reaching 64%). With a systematic set of studies, the maximum PL QY is found to be almost independent of the illuminating UV intensity, while the shell formation kinetics required for reaching the maximum QY linearly depends on the illuminating UV intensity. A stability study of the QD films in air at various temperatures shows highly improved thermal stability of the shelled QDs (up to 120 ℃ in ambient air). These results indicate that the proposed aqueous CdTe/CdS core/shell nanocrystals hold great promise for applications requiring efficiency and stability.展开更多
High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported ...High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC.UC luminescence(UCL)is,however,controlled not only by dopant concentration,yet by an interplay of different parameters including size,crystal and shell quality,and excitation power density(P).Thus,identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy.Here,we quantify the dopant concentration dependence of the UCL quantum yield(ΦUC)of solid NaYF_(4):Yb,Er/NaYF_(4):Lu upconversion core/shell nanocrystals of varying Yb3+and Er3+concentrations(Yb3+series:20%‒98%Yb3+;2%Er3+;Er3+series:60%Yb3+;2%‒40%Er3+).To circumvent other luminescence quenching processes,an elaborate synthesis yielding OH-free UCNC with recordΦUC of~9%and~25 nm core particles with a thick surface shell were used.High Yb3+concentrations barely reduceΦUC from~9%(20%Yb3+)to~7%(98%Yb3+)for an Er3+concentration of 2%,thereby allowing to strongly increase the particle absorption cross section and UCNC brightness.Although an increased Er3+concentration reducesΦUC from~7%(2%Er3+)to 1%(40%)for 60%Yb3+.Nevertheless,at very high P(>1 MW/cm^(2))used for microscopic studies,highly Er3+-doped UCNC display a high brightness because of reduced saturation.These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.展开更多
The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of...The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance...Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance has been made in synthesizing metal nanocrystals with intrinsic chirality.Nonetheless,the majority reports are limited to gold.Herein,through a heteroepitaxial growth strategy,the synthesis of metal nanocrystals with intrinsic chirality to palladium was extended for the first time and their application in enantioselective recognition was demonstrated.The heteroepitaxial growth strategy allows for transferring the chirality of homochiral Au nanocrystals to Au@Pd core–shell nanocrystals.By employing the chiral Au@Pd nanocrystals as enantiomeric recognizing elements,a series of electrochemical sensors for chiral discrimination were developed.Under optimal conditions,the peak potential between D-dihydroxyphenylalanine(D-DOPA)and L-dihydroxyphenylalanine(L-DOPA)is about 80 m V,and the peak current of D-DOPA is 2 times as much as that of L-DOPA,which enables the determination of the enantiomeric excess(EE,%)of L-DOPA.Overall,this report not only introduces a heteroepitaxial growth strategy to synthesize metal nanocrystals with intrinsic chirality,but also demonstrates the superior capability of integrating intrinsic chirality and catalytic properties into metal nanocrystals for chiral recognition.展开更多
Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external ...Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external pressure.In this study,we show that by treating the radial direction as a pseudo-time variable,the graded core/shell system with radially decaying elastic properties can also be described within the symplectic framework.In combination with the shell buckling equation,the present paper addresses the surface wrinkling of graded core/shell structures subjected to the uniform external pressure by solving a series of ordinary differential equations with varying coefficients.Three representative gradient distributions are showcased,and the predicted critical pressure and critical wave number are verified by finite element simulations.The symplectic framework provides an efficient and accurate approach to understand the surface instability and morphological evolution in curved biological tissues and engineered structures.展开更多
High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich...High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.展开更多
Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable f...Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable for their applications in many fields.Hence,impeding anion exchange is important for improving the composition stability of inorganic lead halide perovskite NCs.Herein,CsPb X3(X=Cl,Br)NCs are coated with Cs4PbX6 shell to impede anion exchange and reduce anion mobility.The Cs4PbX6 shell is facily fabricated on CsPbX3 NCs through high temperature injection method.Anion exchange experiments demonstrate that the Cs4 PbX6 shell completely encapsulates CsPbX3 NCs and greatly improves the composition stability of CsPbX3 NCs.Moreover,our work also sheds light on the potential design approaches of various heterostructures to expand the application of CsPbM3(M=Cl,Br,I)NCs.展开更多
This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of...This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of synthesis is generally called pulsed laser ablation in liquid (PLAL). The presence of carbon structures in the solution contributed to the carbon content in the produced Ti-based nanomaterials. The atomic composition of the produced nanostructures was analyzed using SEM-EDS, while TEM micrographs revealed the formation of spherical TiC and core-shell nanostructures ranging from 40 to 100 nm. The identification of atomic planes by HRTEM confirmed a 10 nm diameter C-shell with a graphite structure surrounding the Ti-core. Raman spectroscopy allowed for the identification of D and G peaks for graphite and a Raman signal at 380 and 600 cm<sup>−1</sup>, assigned to TiC. The results contribute to the state-of-the-art production of TiC and Ti-C core-shell nanostructures using the PLAL route.展开更多
AucoreCoshell nanoparticles with different shell thicknesses were prepared by using chemical reduction method and characterized by scanning electron microscopy(SEM) and cyclic voltammetry(CV). The results reveal t...AucoreCoshell nanoparticles with different shell thicknesses were prepared by using chemical reduction method and characterized by scanning electron microscopy(SEM) and cyclic voltammetry(CV). The results reveal that the prepared core-shell nanoparticles were covered by Co shell and exhibited the similar electrochemistry property with the Co nanoparticles surface. Surface enhanced Raman spectroscopy(SERS) activities of these nanoparticles were studied by using pyridine as a probe molecule. It was found that the SERS intensity depended on the Co shell thickness of the core-shell nanoparticles and was weakened with the increasing shell thickness. The SERS intensity of these AucoreCoshell nanoparticles is found to be about twenty times higher than that obtained on an electrochemically roughened cobalt electrode.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0401702)the National Natural Science Foundation of China(Grant Nos.61674074 and 61405089)+6 种基金Development and Reform Commission of Shenzhen Project,China(Grant No.[2017]1395)Shenzhen Peacock Team Project,China(Grant No.KQTD2016030111203005)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.ZDSYS201707281632549)Guangdong Province’s Key R&D Program:Micro-LED Display and Ultra-high Brightness Micro-display Technology,China(Grant No.2019B010925001)Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting,China(Grant No.2017KSYS007)Distinguished Young Scholar of National Natural Science Foundation of Guangdong,China(Grant No.2017B030306010)the start-up fund from Southern University of Science and Technology,Shenzhen,China
文摘Colloidal Pb Se nanocrystals(NCs)have gained considerable attention due to their efficient carrier multiplication and emissions across near-infrared and short-wavelength infrared spectral ranges.However,the fast degradation of colloidal Pb Se NCs in ambient conditions hampers their widespread applications in infrared optoelectronics.It is well-known that the inorganic thick-shell over core improves the stability of NCs.Here,we present the synthesis of Pb Se/Pb S core/shell NCs showing wide spectral tunability,in which the molar ratio of lead(Pb)and sulfur(S)precursors,and the concentration of sulfur and Pb Se NCs in solvent have a significant effect on the efficient Pb S shell growth.The infrared light-emitting diodes(IR-LEDs)fabricated with the Pb Se/Pb S core/shell NCs exhibit an external quantum efficiency(EQE)of 1.3%at 1280 nm.The ligand exchange to optimize the distance between NCs and chloride treatment are important processes for achieving high performance on Pb Se/Pb S NC-LEDs.Our results provide evidence for the promising potential of Pb Se/Pb S NCs over the wide range of infrared optoelectronic applications.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金supported by the National Basic Research Program of China (973 Program, 2012CB921801)the Science and Technology Department of Jiang Su Province (BE2012163)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1443)
文摘'Giant' Cd Se/Cd S core/shell nanocrystals(NCs) were synthesized with thick Cd S shell(15 monolayers), and the x-ray diffraction(XRD) measurement indicates there is a zinc blende phase in the thick Cd S shell, whereas it transformed into wurtzite phase under 5 min radiation with a 400 nm, 594 μJ∕cm2femtosecond(fs) laser beam.The evolution of the NCs’ spontaneous emission under the fs laser radiation was recorded with a Hamamatsu streak camera. The as-synthesized NCs exhibit an amplified spontaneous emission(ASE) at 530 nm, which comes from a bulk-like Cd S shell due to the interfacial potential barrier, which could slow down the relaxation of holes from the shell to the core. After being annealed by an fs laser, the ASE of the g-NCs is transferred from a bulk-like Cd S shell to a quantum-confined Cd Se core because the phase transformation determined with the XRD measurement could remove the interfacial barrier. Besides the ASE at 643 nm, two shorter-wavelength ASE peaks at 589 and 541 nm, corresponding to optical transitions of the second(1P) and third(1D) electron quantization shells of the Cd Se core, also appear, thus indicating that Auger recombination is effectively suppressed.
基金the Iranian Nanotechnology Development Committee for their financial supportUniversity of Kashan for supporting this work by Grant No. 1223097/10the micro and nanomechanics laboratory by Grant No. 14022023/5
文摘Curved shells are increasingly utilized in applied engineering due to their shared characteristics with other sandwich structures,flexibility,and attractive appearance.However,the inability of controlling and regulating vibrations and destroying them afterward is a challenge to scientists.In this paper,the curve shell equations and a linear quadratic regulator are adopted for the state feedback design to manage the structure vibrations in state space forms.A five-layer sandwich doubly curved micro-composite shell,comprising two piezoelectric layers for the sensor and actuator,is modeled by the fourth-order shear deformation theory.The core(honeycomb,truss,and corrugated)is analyzed for the bearing of transverse shear forces.The results show that the honeycomb core has a greater effect on the vibrations.When the parameters related to the core and the weight percentage of graphene increase,the frequency increases.The uniform distribution of graphene platelets results in the lowest natural frequency while the natural frequency increases.Furthermore,without taking into account the piezoelectric layers,the third-order shear deformation theory(TSDT)and fourth-order shear deformation theory(FOSDT)align closely.However,when the piezoelectric layers are incorporated,these two theories diverge significantly,with the frequencies in the FOSDT being lower than those in the TSDT.
基金funding from the Ministry of Education,Culture,Research,and Technology,Indonesia,through the PDKN Research Grant with Contract No.041/E5/PG.02.00.PL/2023.
文摘Curcumin is a natural polyphenol that is used in various traditional medicines.However,its inherent properties,such as its rapid degradation and metabolism,low bioavailability,and short half-life,are serious problems that must be resolved.To this end,a drug carrier incorporating natural magnetic cores in a zeolite framework was developed and applied to the loading of curcumin in ethanol solutions.In this system,curcumin is encapsulated in a zeolite Na(ZNA)magnetic core–shell structure(Fe@Si/ZNA),which can be easily synthesized using an in situ method.Synthesis of Fe_(3)O_(4) nanoparticles was carried out from natural materials using a co-precipitation method.Analysis of the prepared magnetic core–shell structures and composites was carried out using vibrating-sample magnetometery,Fourier transform infrared spectroscopy,transmission electron microscopy,and x-ray diffraction.The cumulative loading of curcumin in the ZNA composite with 9%nanoparticles was found to reach 90.70%with a relatively long half-life of 32.49 min.Stability tests of curcumin loading in the composite showed that adding magnetic particles to the zeolite framework also increased the stability of the composite structure.Adsorption kinetics and isotherm studies also found that the system follows the pseudo-second-order and Langmuir isotherm models.
基金National Natural Science Foundation of China,Grant/Award Numbers:21978160,52003300,52373087Shaanxi Province Natural Science Foundation,Grant/Award Number:2024JC‐YBMS‐131。
文摘A stable and highly active core‐shell heterostructure electrocatalyst is essential for catalyzing oxygen evolution reaction(OER).Here,a dual‐trimetallic core‐shell heterostructure OER electrocatalyst that consists of a NiFeWS_(2) inner core and an amorphous NiFeW(OH)_(z)outer shell is designed and synthesized using in situ electrochemical tuning.The electrochemical measurements of different as‐synthesized catalysts with a similar mass loading suggest that the core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) nanosheets exhibit the highest overall performance compared with that of other bimetallic reference catalysts for the OER.Additionally,the nanosheet arrays were in situ grown on hydrophilic‐treated carbon paper to fabricate an integrated three‐dimensional electrode that affords a current density of 10 mA cm^(−2) at a small overpotential of 182 mV and a low Tafel slope of 35 mV decade^(−1) in basic media.The Faradaic efficiency of core‐shell Ni_(0.66)Fe_(0.17)W_(0.17)S_(2)@amorphous NiFeW(OH)_(z) is as high as 99.5% for OER.The scanning electron microscope,transmission electron microscope,and X‐ray photoelectron spectroscopy analyses confirm that this electrode has excellent stability in morphology and elementary composition after long‐term electrochemical measurements.Importantly,density functional theory calculations further indicate that the core‐shell heterojunction increased the conductivity of the catalyst,optimized the adsorption energy of the OER intermediates,and improved the OER activity.This study provides a universal strategy for designing more active core‐shell structure electrocatalysts based on the rule of coordinated regulation between electronic transport and active sites.
基金Acknowledgements The financial support from the National Natural Science Foundation of China (Nos. 21233005 and 91433204) is acknowledged.
文摘A one-pot/three-step synthetic scheme was developed for phase-pure epitaxy of CdS shells on zinc-blende CdSe nanocrystals to yield shells with up to sixteen monolayers. The key parameters for the epitaxy were identified, including the core nanocrystal concentration, solvent type/composition, quality of the core nanocrystals, epitaxial growth temperature, type/concentration of ligands, and composition of the precursors. Most of these key parameters were not influential when the synthetic goal was thin-shell CdSe/CdS core/shell nanocrystals. The finalized synthetic scheme was reproducible at an almost quantitative level in terms of the crystal structure, shell thickness, and optical properties.
基金Funded by the National Natural Science Foundation of China (Nos.50532030 and 50625206)the Zhejiang Provincial Natural ScienceFoundation of China (No. Z4080021)
文摘A simple sonochemical route for the surface coating of titanium dioxide on cadmium sulfide nanocrystal was reported. After 2 h ultrasonic irradiation treatment, the mixture of CdS nanocrystals and tetrabutyl titanate in an aqueous medium yielded CdS/TiO2 nanocrystals composites with core/shell structure. The thickness of TiO2 layer with smooth interface could be easily controlled via changing the concentration of the precursors and the time of irradiation. The core/shell nanocrysrals were characterized by X-ray diffraction, transmission electron microscope and UV-vis spectrometry techniques. The prepared semiconductor composites with particular band structure present appealing properties especially in photochemical activity.
基金Supported by the National Natural Science Foundation of China(Nos.20704042,60508004 and 60225004)the Committee of Science and Technology of Shanghai City,China(Nos.07JC14058 and 0752nm016)+1 种基金the Pujiang Talent Plan of Shanghai City,China(No.07PJ14095)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘We described a facile method for preparing CdSe/CdS/ZnS core/shell/shell nanocrystals from air-stable single source precursors.The single source precursors of cadmium ethylxanthate and zinc ethylxanthate were used to form CdS and ZnS shell layers in octadecene.An efficient modification of CdSe/CdS/ZnS nanocrystals was subsequently performed to obtain hydrophilic nanocrystal fluorophores with good stability in a pH range of 1.6—10.
文摘We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-intensity ultraviolet (UV) light illumination. The resulting photo-induced dissociation of S2O2- ions conveniently triggers the formation of critical two-dimensional CdS epitaxy on the CdTe surface at room temperature, as opposed to initiating the growth of individual CdS core-only nanocrystals. This controlled colloidal hetero-epitaxy leads to a substantial increase in the photoluminescence (PL) quantum yield (QY) of the shelled nanocrystals in water (reaching 64%). With a systematic set of studies, the maximum PL QY is found to be almost independent of the illuminating UV intensity, while the shell formation kinetics required for reaching the maximum QY linearly depends on the illuminating UV intensity. A stability study of the QD films in air at various temperatures shows highly improved thermal stability of the shelled QDs (up to 120 ℃ in ambient air). These results indicate that the proposed aqueous CdTe/CdS core/shell nanocrystals hold great promise for applications requiring efficiency and stability.
基金the German Science Foundation DFG(grants RE 1203/18-1 and HA 1649/7-1)the EU(COST 1403)for financial support.
文摘High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion(UC)nanocrystals(UCNC)like NaYF_(4):Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC.UC luminescence(UCL)is,however,controlled not only by dopant concentration,yet by an interplay of different parameters including size,crystal and shell quality,and excitation power density(P).Thus,identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy.Here,we quantify the dopant concentration dependence of the UCL quantum yield(ΦUC)of solid NaYF_(4):Yb,Er/NaYF_(4):Lu upconversion core/shell nanocrystals of varying Yb3+and Er3+concentrations(Yb3+series:20%‒98%Yb3+;2%Er3+;Er3+series:60%Yb3+;2%‒40%Er3+).To circumvent other luminescence quenching processes,an elaborate synthesis yielding OH-free UCNC with recordΦUC of~9%and~25 nm core particles with a thick surface shell were used.High Yb3+concentrations barely reduceΦUC from~9%(20%Yb3+)to~7%(98%Yb3+)for an Er3+concentration of 2%,thereby allowing to strongly increase the particle absorption cross section and UCNC brightness.Although an increased Er3+concentration reducesΦUC from~7%(2%Er3+)to 1%(40%)for 60%Yb3+.Nevertheless,at very high P(>1 MW/cm^(2))used for microscopic studies,highly Er3+-doped UCNC display a high brightness because of reduced saturation.These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.
基金the National Natural Science Foundation of China (No. 50572072)Nano Special Fouds from Science and Technology Commission of Shanghai Municipality (No. 0852nm05200)
文摘The synthesis of CdSe/ZnS core/shell nanocrystals though aqueous phase using the coprecipitation method was reported. The influences of factors such as injection methods and dosages of precursors, reaction duration of water-bathing and the initial CdSe:ZnS molar ratio were discussed. In comparison to the CdSe plain core nanocrystals, the CdSe/ZnS core/shell nanocrystals show much brighter photoluminescence demonstrated by the photoluminescence spectra. The epitaxial growth of the core/shell structures was verified by TEM and XRD.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金financially supported by the National Natural Science Foundation of China(Nos.22072144,22102171 and 21974131)the Department of Science and Technology of Jilin Province(No.20200201080JC)。
文摘Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance has been made in synthesizing metal nanocrystals with intrinsic chirality.Nonetheless,the majority reports are limited to gold.Herein,through a heteroepitaxial growth strategy,the synthesis of metal nanocrystals with intrinsic chirality to palladium was extended for the first time and their application in enantioselective recognition was demonstrated.The heteroepitaxial growth strategy allows for transferring the chirality of homochiral Au nanocrystals to Au@Pd core–shell nanocrystals.By employing the chiral Au@Pd nanocrystals as enantiomeric recognizing elements,a series of electrochemical sensors for chiral discrimination were developed.Under optimal conditions,the peak potential between D-dihydroxyphenylalanine(D-DOPA)and L-dihydroxyphenylalanine(L-DOPA)is about 80 m V,and the peak current of D-DOPA is 2 times as much as that of L-DOPA,which enables the determination of the enantiomeric excess(EE,%)of L-DOPA.Overall,this report not only introduces a heteroepitaxial growth strategy to synthesize metal nanocrystals with intrinsic chirality,but also demonstrates the superior capability of integrating intrinsic chirality and catalytic properties into metal nanocrystals for chiral recognition.
基金Project supported by the National Natural Science Foundation of China(No.11972259)。
文摘Wrinkles in flat graded elastic layers have been recently described as a timevarying Hamiltonian system by the energy method.Cylindrical core/shell structures can also undergo surface instabilities under the external pressure.In this study,we show that by treating the radial direction as a pseudo-time variable,the graded core/shell system with radially decaying elastic properties can also be described within the symplectic framework.In combination with the shell buckling equation,the present paper addresses the surface wrinkling of graded core/shell structures subjected to the uniform external pressure by solving a series of ordinary differential equations with varying coefficients.Three representative gradient distributions are showcased,and the predicted critical pressure and critical wave number are verified by finite element simulations.The symplectic framework provides an efficient and accurate approach to understand the surface instability and morphological evolution in curved biological tissues and engineered structures.
文摘High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474018,61704007,and 61575019)the National Key Research and Development Program of China(Grant No.2017YFB0404501)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2017RC034)the Shenzhen China Star Optoelectronics Technology Co.,Ltd
文摘Inorganic lead halide perovskite nanocrystals(NCs)with superior photoelectric properties are expected to have excellent performance in many fields.However,the anion exchange changes their features and is unfavorable for their applications in many fields.Hence,impeding anion exchange is important for improving the composition stability of inorganic lead halide perovskite NCs.Herein,CsPb X3(X=Cl,Br)NCs are coated with Cs4PbX6 shell to impede anion exchange and reduce anion mobility.The Cs4PbX6 shell is facily fabricated on CsPbX3 NCs through high temperature injection method.Anion exchange experiments demonstrate that the Cs4 PbX6 shell completely encapsulates CsPbX3 NCs and greatly improves the composition stability of CsPbX3 NCs.Moreover,our work also sheds light on the potential design approaches of various heterostructures to expand the application of CsPbM3(M=Cl,Br,I)NCs.
文摘This paper reports on the ablation process of a pure Ti solid target immersed in a C-enriched acetone solution, leading to the production of titanium carbide (TiC) and Ti-C core-shell nanostructures. The used route of synthesis is generally called pulsed laser ablation in liquid (PLAL). The presence of carbon structures in the solution contributed to the carbon content in the produced Ti-based nanomaterials. The atomic composition of the produced nanostructures was analyzed using SEM-EDS, while TEM micrographs revealed the formation of spherical TiC and core-shell nanostructures ranging from 40 to 100 nm. The identification of atomic planes by HRTEM confirmed a 10 nm diameter C-shell with a graphite structure surrounding the Ti-core. Raman spectroscopy allowed for the identification of D and G peaks for graphite and a Raman signal at 380 and 600 cm<sup>−1</sup>, assigned to TiC. The results contribute to the state-of-the-art production of TiC and Ti-C core-shell nanostructures using the PLAL route.
文摘AucoreCoshell nanoparticles with different shell thicknesses were prepared by using chemical reduction method and characterized by scanning electron microscopy(SEM) and cyclic voltammetry(CV). The results reveal that the prepared core-shell nanoparticles were covered by Co shell and exhibited the similar electrochemistry property with the Co nanoparticles surface. Surface enhanced Raman spectroscopy(SERS) activities of these nanoparticles were studied by using pyridine as a probe molecule. It was found that the SERS intensity depended on the Co shell thickness of the core-shell nanoparticles and was weakened with the increasing shell thickness. The SERS intensity of these AucoreCoshell nanoparticles is found to be about twenty times higher than that obtained on an electrochemically roughened cobalt electrode.