Traffic control and management are effective measures to solve the problem of traffic congestion. The optimal control model for freeway corridor is developed under incident conditions, which is in the form of minimiza...Traffic control and management are effective measures to solve the problem of traffic congestion. The optimal control model for freeway corridor is developed under incident conditions, which is in the form of minimization of the sum of the square of the difference between traffic demand and capacity at each intersection and on the freeway bottleneck section. The model optimizes control parameters of phase splits at arterial intersections, off-ramp diversion rates at upstream off-ramps and on-ramp diversion rates at downstream on ramps. Finally, the objective function is discussed and it is showed that the optimal control model is simple and practical.展开更多
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ...This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.展开更多
The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urba...The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urban trips. Traffic corridor is a major scenario that supports travellers to commute from suburban residential areas to central working areas. Studying their modal choice behaviour is receiving more and more interests. On one hand, it will guide the travellers to rationally choose their most economic and beneficial mode for urban trips. On the other hand, it will help traffic operators to make more appropriate policies to enhance the share of public transit in order to alleviate the traffic congestion and produce more economic and social benefits. To analyze the travel modal choice, a generalized cost model for three typical modes is first established to evaluate each different travel alternative. Then, random utility theory(RUT) and decision field theory(DFT) are introduced to describe the decision-making process how travellers make their mode choices. Further, some important factors that may influence the modal choice behaviour are discussed as well. To test the feasibility of the proposed model, a field test in Beijing was conducted to collect the real-time data and estimate the model parameters. The improvements in the test results and analysis show new advances in the development of travel mode choice on multimodal transportation networks.展开更多
基金This work was supported by the national 863 project of China (No. 2004AA505560).
文摘Traffic control and management are effective measures to solve the problem of traffic congestion. The optimal control model for freeway corridor is developed under incident conditions, which is in the form of minimization of the sum of the square of the difference between traffic demand and capacity at each intersection and on the freeway bottleneck section. The model optimizes control parameters of phase splits at arterial intersections, off-ramp diversion rates at upstream off-ramps and on-ramp diversion rates at downstream on ramps. Finally, the objective function is discussed and it is showed that the optimal control model is simple and practical.
基金NationalNaturalScience Emphases Foundation ofChina,No.40335049NationalNaturalScience Foundation ofChina,No.40471059
文摘This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.
基金Project(2012CB725405)supported in part by National Basic Research Program of ChinaProject(2014BAG03B01)supported by the National Science and Technology Support Program,China+1 种基金Project(71301083)supported by the National Natural Science Foundation of ChinaProject(20131089307)supported by the Project Supported by Tsinghua University,China
文摘The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit(subways or buses), or park-and-ride combinations for urban trips. Traffic corridor is a major scenario that supports travellers to commute from suburban residential areas to central working areas. Studying their modal choice behaviour is receiving more and more interests. On one hand, it will guide the travellers to rationally choose their most economic and beneficial mode for urban trips. On the other hand, it will help traffic operators to make more appropriate policies to enhance the share of public transit in order to alleviate the traffic congestion and produce more economic and social benefits. To analyze the travel modal choice, a generalized cost model for three typical modes is first established to evaluate each different travel alternative. Then, random utility theory(RUT) and decision field theory(DFT) are introduced to describe the decision-making process how travellers make their mode choices. Further, some important factors that may influence the modal choice behaviour are discussed as well. To test the feasibility of the proposed model, a field test in Beijing was conducted to collect the real-time data and estimate the model parameters. The improvements in the test results and analysis show new advances in the development of travel mode choice on multimodal transportation networks.