期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Nondegenerate solitons of the(2+1)-dimensional coupled nonlinear Schrodinger equations with variable coefficients in nonlinear optical fibers
1
作者 杨薇 程雪苹 +1 位作者 金桂鸣 王佳楠 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期170-178,共9页
We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota b... We derive the multi-hump nondegenerate solitons for the(2+1)-dimensional coupled nonlinear Schrodinger equations with propagation distance dependent diffraction,nonlinearity and gain(loss)using the developing Hirota bilinear method,and analyze the dynamical behaviors of these nondegenerate solitons.The results show that the shapes of the nondegenerate solitons are controllable by selecting different wave numbers,varying diffraction and nonlinearity parameters.In addition,when all the variable coefficients are chosen to be constant,the solutions obtained in this study reduce to the shape-preserving nondegenerate solitons.Finally,it is found that the nondegenerate two-soliton solutions can be bounded to form a double-hump two-soliton molecule after making the velocity of one double-hump soliton resonate with that of the other one. 展开更多
关键词 nondegenerate solitons variable coefficients coupled nonlinear schr?dinger equations Hirota bilinear method
原文传递
Coupled-generalized nonlinear Schr¨odinger equations solved by adaptive step-size methods in interaction picture
2
作者 陈磊 李磐 +3 位作者 刘河山 余锦 柯常军 罗子人 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期332-340,共9页
We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(R... We extend two adaptive step-size methods for solving two-dimensional or multi-dimensional generalized nonlinear Schr ¨odinger equation(GNLSE): one is the conservation quantity error adaptive step-control method(RK4IP-CQE), and the other is the local error adaptive step-control method(RK4IP-LEM). The methods are developed in the vector form of fourthorder Runge–Kutta iterative scheme in the interaction picture by converting a vector equation in frequency domain. By simulating the supercontinuum generated from the high birefringence photonic crystal fiber, the calculation accuracies and the efficiencies of the two adaptive step-size methods are discussed. The simulation results show that the two methods have the same global average error, while RK4IP-LEM spends more time than RK4IP-CQE. The decrease of huge calculation time is due to the differences in the convergences of the relative photon number error and the approximated local error between these two adaptive step-size algorithms. 展开更多
关键词 nonlinear optics optical propagation in nonlinear media coupled-generalized nonlinear schr?dinger equations(C-GNLSE) adaptive step-size methods
原文传递
On Two Types of Stability of Solutions to a Pair of Damped Coupled Nonlinear Evolution Equations
3
作者 Mark Jones 《Advances in Pure Mathematics》 2024年第5期354-366,共13页
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid... The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense. 展开更多
关键词 nonlinear schrödinger equation STABILITY Capillary-Gravity Waves
下载PDF
Breather and its interaction with rogue wave of the coupled modified nonlinear Schrodinger equation
4
作者 王明 徐涛 +1 位作者 何国亮 田雨 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期350-356,共7页
We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localiz... We investigate the coupled modified nonlinear Schr?dinger equation.Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions.To obtain the higher-order localized wave solution,the N-fold generalized Darboux transformation is given.Under the condition that the characteristic equation admits a double-root,we present the expression of the first-order interactional solution.Then we graphically analyze the dynamics of the breather and rogue wave.Due to the simultaneous existence of nonlinear and self-steepening terms in the equation,different profiles in two components for the breathers are presented. 展开更多
关键词 coupled modified nonlinear schr?dinger equation Darboux transformation BREATHER rouge wave
原文传递
Existence and Stability of Standing Waves for the Nonlinear Schrödinger Equation with Combined Nonlinearities and a Partial Harmonic Potential
5
作者 Wei Wang 《Journal of Applied Mathematics and Physics》 2024年第5期1606-1615,共10页
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti... In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential. 展开更多
关键词 nonlinear schrödinger equation Orbital Stability Standing Waves
下载PDF
Stability of Standing Waves for the Nonlinear Schrödinger Equation with Mixed Power-Type and Hartree-Type Nonlinearities
6
作者 Chunyang Yan 《Journal of Applied Mathematics and Physics》 2024年第10期3439-3457,共19页
This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,... This paper studies the existence of stable standing waves for the nonlinear Schrödinger equation with Hartree-type nonlinearity i∂tψ+Δψ+| ψ |pψ+(| x |−γ∗| ψ |2)ψ=0,   (t,x)∈[ 0,T )×ℝN.Where ψ=ψ(t,x)is a complex valued function of (t,x)∈ℝ+×ℝN. The parameters N≥3, 0p4Nand 0γmin{ 4,N }. By using the variational methods and concentration compactness principle, we prove the orbital stability of standing waves. 展开更多
关键词 nonlinear schrödinger equation Concentration Compactness Principle Orbital Stability
下载PDF
Localized waves of the coupled cubic–quintic nonlinear Schrdinger equations in nonlinear optics
7
作者 徐涛 陈勇 林机 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期80-93,共14页
We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrdinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector sol... We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrdinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higher-order localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed:(i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions; (ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons; (iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of α. These results further uncover some striking dynamic structures in the CCQNLS system. 展开更多
关键词 generalized Darboux transformation localized waves SOLITON rogue wave BREATHER coupled cubic-quintic nonlinear schr dinger equations
原文传递
Novel exact solutions of coupled nonlinear Schro¨dinger equations with time–space modulation
8
作者 陈俊超 李彪 陈勇 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期197-203,共7页
We construct various novel exact solutions of two coupled dynamical nonlinear Schrōdinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrōdinger equations with time-and space-... We construct various novel exact solutions of two coupled dynamical nonlinear Schrōdinger equations. Based on the similarity transformation, we reduce the coupled nonlinear Schrōdinger equations with time-and space-dependent potentials, nonlinearities, and gain or loss to the coupled dynamical nonlinear Schrrdinger equations. Some special types of non-travelling wave solutions, such as periodic, resonant, and quasiperiodically oscillating solitons, are used to exhibit the wave propagations by choosing some arbitrary functions. Our results show that the number of the localized wave of one component is always twice that of the other one. In addition, the stability analysis of the solutions is discussed numerically. 展开更多
关键词 coupled dynamical nonlinear schrōdinger equations coupled nonlinear schrōdinger equationswith time-space modulation exact solutions
原文传递
Solving coupled nonlinear Schrodinger equations via a direct discontinuous Galerkin method
9
《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期10-14,共5页
In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the disc... In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations. 展开更多
关键词 direct discontinuous Galerkin method coupled nonlinear schr6dinger equation massconservation
原文传递
New Exact Solutions for the Coupled Nonlinear Schrödinger Equations with Variable Coefficients
10
作者 Yuting Qiu Ping Gao 《Journal of Applied Mathematics and Physics》 2020年第8期1515-1523,共9页
In this paper, coupled nonlinear Schr<span style="white-space:nowrap;">&#246;</span>dinger equations with variable coefficients are studied, which can be used to describe the interaction amon... In this paper, coupled nonlinear Schr<span style="white-space:nowrap;">&#246;</span>dinger equations with variable coefficients are studied, which can be used to describe the interaction among the modes in nonlinear optics and Bose-Einstein condensation. Some novel bright-dark solitons and dark-dark solitons are obtained by modified Sine-Gordon equation method. Moreover, some figures are provided to illustrate how the soliton solutions propagation is determined by the different values of the variable group velocity dispersion terms, which can be used to model various phenomena. 展开更多
关键词 Modified Sine-Gordon equation Method coupled nonlinear schrödinger equation Exact Solutions Bright-Dark Soliton
下载PDF
Soliton, Breather and Rogue Wave Solutions for the Nonlinear Schrdinger Equation Coupled to a Multiple Self-Induced Transparency System 被引量:1
11
作者 王鑫 王雷 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第3期1-4,共4页
We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.Th... We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.The N-soliton, N-breather and N th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first-to second-order ones are shown. 展开更多
关键词 LIM SOLITON dinger equation coupled to a Multiple Self-Induced Transparency System Breather and Rogue Wave Solutions for the nonlinear schr
原文传递
Localized waves in three-component coupled nonlinear Schrdinger equation 被引量:1
12
作者 徐涛 陈勇 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期180-188,共9页
We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,... We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. 展开更多
关键词 localized waves three-component coupled nonlinear schr ¨odinger equation generalized Darboux transformation
原文传递
Quaternion Approach to Solve Coupled Nonlinear Schrdinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems
13
作者 刘岚岚 吴重庆 +2 位作者 尚超 王健 高凯强 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期78-82,共5页
The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled qua... The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link. 展开更多
关键词 In dinger equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems Quaternion Approach to Solve coupled nonlinear schr
原文传递
Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schr?dinger equation
14
作者 张雪峰 许韬 +1 位作者 李敏 孟悦 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期244-252,共9页
We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NL... We make a quantitative study on the soliton interactions in the nonlinear Schro¨dinger equation(NLSE) and its variable–coefficient(vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities(especially the soliton accelerations and interaction forces);whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles,particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics. 展开更多
关键词 nonlinear schr?dinger equation soliton solutions asymptotic analysis soliton interactions
原文传递
A high order energy preserving scheme for the strongly coupled nonlinear Schr¨odinger system 被引量:3
15
作者 蒋朝龙 孙建强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期36-40,共5页
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the solito... A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly. 展开更多
关键词 average vector field method strongly coupled nonlinear schrōdinger system energy preservingscheme
原文传递
EXISTENCE AND NONEXISTENCE FOR THE INITIAL BOUNDARY VALUE PROBLEM OF ONE CLASS OF SYSTEM OF MULTIDIMENSIONAL NONLINEAR SCHRDINGER EQUATIONS WITH OPERATOR AND THEIR SOLITON SOLUTIONS 被引量:3
16
作者 郭柏灵 《Acta Mathematica Scientia》 SCIE CSCD 1989年第1期45-56,共12页
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ... The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term. 展开更多
关键词 dinger equations WITH OPERATOR AND THEIR SOLITON SOLUTIONS EXISTENCE AND NONEXISTENCE FOR THE INITIAL BOUNDARY VALUE PROBLEM OF ONE CLASS OF SYSTEM OF MULTIDIMENSIONAL nonlinear schr
下载PDF
Standing Waves for Quasilinear Schrödinger Equations with Indefinite Nonlinearity 被引量:1
17
作者 Zupei Shen Haiquan Li 《Journal of Applied Mathematics and Physics》 2021年第5期1003-1010,共8页
In this article, we consider quasilinear <span style="white-space:nowrap;">Schr&#246;dinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" ... In this article, we consider quasilinear <span style="white-space:nowrap;">Schr&#246;dinger</span> equations of the form <img src="Edit_4d91f4a8-f399-4895-9edd-b0d77ec07654.bmp" alt="" /> Such equations have been derived as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics. Unlike all known results in the literature, the nonlinearity is allowed to be indefinite. It is very interesting from physical and mathematical viewpoint. By mountain pass theorem and some special techniques, we prove the existence of solutions for the quasilinear <span style="white-space:nowrap;">Schr&#246;dinger</span> equations with indefinite nonlinearity. This indefinite problem had never been considered so far. So our main results can be regarded as complementary work in the literature. 展开更多
关键词 Quasilinear schrödinger equations Indefinite nonlinearity Standing Waves
下载PDF
A Local Discontinuous Galerkin Method with Generalized Alternating Fluxes for 2D Nonlinear Schrödinger Equations
18
作者 Hongjuan Zhang Boying Wu Xiong Meng 《Communications on Applied Mathematics and Computation》 2022年第1期84-107,共24页
In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not... In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results. 展开更多
关键词 Local discontinuous Galerkin method Two-dimensional nonlinear schrödinger equation Generalized alternating fluxes Optimal error estimates
下载PDF
能量临界分数阶非线性Schrodinger方程的整体弱解
19
作者 武少琪 廖梦兰 曹春玲 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期87-91,共5页
利用紧性方法给出能量临界分数阶非线性Schr9dinger方程Cauchy问题解的存在性,并证明Cauchy问题存在整体解.通过构造逼近方程,对满足逼近方程的解序列取极限,得到的极限函数即为能量临界分数阶非线性Schr9dinger方程的整体弱解,并证明... 利用紧性方法给出能量临界分数阶非线性Schr9dinger方程Cauchy问题解的存在性,并证明Cauchy问题存在整体解.通过构造逼近方程,对满足逼近方程的解序列取极限,得到的极限函数即为能量临界分数阶非线性Schr9dinger方程的整体弱解,并证明该弱解满足能量不等式和质量守恒性质. 展开更多
关键词 非线性schr9dinger方程 能量临界 分数阶 弱解 紧性
下载PDF
A new finite difference scheme for a dissipative cubic nonlinear Schrdinger equation 被引量:2
20
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期27-32,共6页
This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-lev... This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient. 展开更多
关键词 dissipative cubic nonlinear schr5dinger equation three-level finite difference convergence and stability analysis
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部