期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
INFLUENCES OF SLOPE GRADIENT ON SOIL EROSION 被引量:3
1
作者 刘青泉 陈力 李家春 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第5期510-519,共10页
The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying w... The main factors influencing soil erosion include the net rain excess, the water depth, the velocity, the shear stress of overland flows, and the erosion-resisting capacity of soil. The laws of these factors varying with the slope gradient were investigated by using the kinematic wave theory. Furthermore, the critical slope gradient of erosion was driven. The analysis shows that the critical slope gradient of soil erosion is dependent on grain size, soil bulk density, surface roughness, runoff length, net rain excess, and the friction coefficient of soil, etc. The critical slope gradient has been estimated theoretically with its range between 41.5 degrees similar to 50 degrees. 展开更多
关键词 soil erosion critical slope gradient flow scouring capability soil stability
下载PDF
Large eddy simulation of flow over a three-dimensional hill with different slope angles 被引量:1
2
作者 Liang LI Deqian ZHENG +3 位作者 Guixiang CHEN Pingzhi FANG Wenyong MA Shengming TANG 《Frontiers of Earth Science》 SCIE CSCD 2024年第1期98-111,共14页
Slope variation will significantly affect the characteristics of the wind field around a hill.This paper conducts a large-eddy simulation(LES)on an ideal 3D hill to study the impact of slope on wind field properties.E... Slope variation will significantly affect the characteristics of the wind field around a hill.This paper conducts a large-eddy simulation(LES)on an ideal 3D hill to study the impact of slope on wind field properties.Eight slopes ranging from 10°to 45°at 5°intervals are considered,which covers most conventional hill slopes.The inflow turbulence for the LES is generated by adopting a modified generation method that combines the equilibrium boundary conditions with the Fluent inherent vortex method to improve the simulation accuracy.The time-averaged flow field and the instantaneous vortex structure under the eight slopes are comparatively analyzed.The accuracy of the present method is verified by comparison with experimental data.The slope can affect both the mean and fluctuating wind flow fields around the 3D hill,especially on the hilltop and the leeward side,where a critical slope of 25°can be observed.The fluctuating wind speeds at the tops of steep hills(with slope angles beyond 25°)decrease with increasing slope,while the opposite phenomenon occurs on gentle hills.With increasing slope,the energy of the high-speed descending airflow is enhanced and pushes the separated flow closer to the hill surface,resulting in increased wind speed near the wall boundary on the leeward side and inhibiting the development of turbulence.The vortex shedding trajectory in the wake region becomes wider and longer,suppressing the growth of the mean wind near the wall boundary and enhancing the turbulence intensity. 展开更多
关键词 large eddy simulation inflow turbulence topographic wind field critical slope flow mechanism
原文传递
Wind Tunnel Study of Multiple Factors Affecting Wind Erosion from Cropland in Agro-pastoral Area of Inner Mongolia,China 被引量:4
3
作者 HE Ji-jun CAI Qiang-guo CAO Wen-qing 《Journal of Mountain Science》 SCIE CSCD 2013年第1期68-74,共7页
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture c... In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion. 展开更多
关键词 Agro-pastoral area Soil wind erosion critical slope Wind tunnel experiment
原文传递
Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles 被引量:3
4
作者 Pingzhi FANG Deqian ZHENG +2 位作者 Liang LI Wenyong MA Shengming TANG 《Frontiers of Earth Science》 SCIE CAS CSCD 2019年第4期705-720,共16页
Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrai... Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrain was further modeled as uphill and downhill segments with various slope angles relative to the incoming flow.The wind speed ratios and pressure characteristics around the 2D terrain were numerically and experimentally investigated in this study.Aerodynamic characteristics of the 2D terrain with a limitedlength upper surface were first investigated in the wind tunnel with sheared incoming flow.The corresponding numerical investigation was also conducted by using the commercial computational fluid dynamics code FLUENT with the realizable k-ε turbulence model.Special efforts were made to maintain the inflow boundary conditions throughout the computational domain.Aerodynamic characteristics were then investigated for the ideal 2D terrain with an unlimited-length upper surface by using a numerical method with uniform incoming flow.Comparisons of the different terrain models and incoming flows from the above studies show that the wind pressure coefficients and the wind speed ratios are both affected by the slope angle.A negative peak value of the wind pressure coefficients exists at the escarpment point,where flow separation occurs,for the uphill and downhill terrain models with slope angles of 40°and 30°,respectively.Correspondingly,the streamwise wind speed ratios at the points above the escarpment point for the uphill terrain model increase with increasing slope angle,reach their peak values at the slope angle of a=40°and decrease when the slope angle increases further.For the downhill terrain model,similar trends exist at the points above the escarpment point with the exception that the critical slope angle is a=30°. 展开更多
关键词 numerical simulation wind tunnel test aerodynamic characteristics critical slope angle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部