GeoPyTool is an open source application developed for geological calculations and plots,such as geochemical classification,parameter calculation,basic statistical analysis and diagrams for structural geology.More than...GeoPyTool is an open source application developed for geological calculations and plots,such as geochemical classification,parameter calculation,basic statistical analysis and diagrams for structural geology.More than acting as a link from raw data stored in Microsoft Excel■(MS Excel)files to vector graphic files,GeoPyTool includes recently developed routines that have not been included in previous software,such as the calculation of the Ce(Ⅳ)/Ce(Ⅲ)ratio for zircons as a method to examine the temporal evolution of oxygen fugacity in the magmatic source for igneous rocks,and the temperature calculator with titanium in zircon and zirconium in rutile.Besides these routines,GeoPyTool also allows users to load any figure from articles or books as a base map.As a Python-based crossplatform program,GeoPyTool works on Windows?,MacOS X?and GNU/Linux.GeoPyTool can do the whole process from data to results without the dependence of Microsoft Excel?,CorelDraw?and other similar software.It takes Excel?XLSX and CSV(Comma Separated Value)as the formats of both the input data source files and the output calculation results files.The figures generated by GeoPyTool can be saved as portable network graphics(PNG),scalable vector graphics(SVG)or portable document format(PDF).Another highlight of GeoPyTool is the multilingual support,the official versio n of GeoPyTool supports both Chinese and English,and additional languages can be loaded through interface files.GeoPyTool is still in the development stage and will be expanded with further geochemical and structural geology routines.As an open source project,all source code of GeoPyTool are accessible on Github(https://github.com/GeoPyTool/GeoPyTool).Users with Python experience can join in the development team and build more complex functions expanding the capabilities of GeoPyTool.展开更多
In order to overcome the defects of the dedicated video conference remote control, this paper designs and implements a Qt-based cross-platform video conferencing remote control. The remote control not only implements ...In order to overcome the defects of the dedicated video conference remote control, this paper designs and implements a Qt-based cross-platform video conferencing remote control. The remote control not only implements a full range of video conferencing control functions with an easy-to-use visual interface;but also implement cross-platform feature to allow users to use remote control software on their own equipment. It is economic, convenient and stylish for users. This paper mainly describes the design and implementation of remote control system framework and cross-platform features. Finally, the result in the paper shows: This remote control is reliable and easy to use.展开更多
The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factor...The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factors and environments. For example, the mobile applications usually require frequent cross-equipment compatibility. This paper proposes a reasonable BIM-based FM cross-platform framework and develops a mobile application on the basis of an existing BIM-based FM system. The developed mobile application is applied in a case study of a metro station project in Guangzhou to verify its effectiveness in FM practice. It helps maintenance staff in viewing BIMs, accessing related information, and updating maintenance records in a unique platform. The test results demonstrate that the proposed BIM-based cross-platform framework meet the FM application requirements and supports the extension of FM functions.展开更多
Single nucleotide polymorphism (SNP) array is a recently developed biotechnology that is extensively used in the study of cancer genomes. The various available platforms make cross-study validations/comparisons diffic...Single nucleotide polymorphism (SNP) array is a recently developed biotechnology that is extensively used in the study of cancer genomes. The various available platforms make cross-study validations/comparisons difficult. Meanwhile, sample sizes of the studies are fast increasing, which poses a heavy computational burden to even the fastest PC.Here, we describe a novel method that can generate a platform-independent dataset given SNP arrays from multiple platforms. It extracts the common probesets from individual platforms, and performs cross-platform normalizations and summari-zations based on these probesets. Since different platforms may have different numbers of probes per probeset (PPP), the above steps produce preprocessed signals with different noise levels for the platforms. To handle this problem, we adopt a platform-dependent smoothing strategy, and produce a preprocessed dataset that demonstrates uniform noise levels for individual samples.To increase the scalability of the method to a large number of samples, we devised an algorithm that split the samples into multiple tasks, and probesets into multiple segments before submitting to a parallel computing facility. This scheme results in a drastically reduced computation time and increased ability to process ultra-large sample sizes and arrays.展开更多
现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗...现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFC0600509)the National Natural Science Foundation of China(No.41772069)+1 种基金the China Geological Survey Program(Nos.1212011085490,12120113089600,12120114028701)the Fundamental Research Funds for the Central University(No.2652017259)
文摘GeoPyTool is an open source application developed for geological calculations and plots,such as geochemical classification,parameter calculation,basic statistical analysis and diagrams for structural geology.More than acting as a link from raw data stored in Microsoft Excel■(MS Excel)files to vector graphic files,GeoPyTool includes recently developed routines that have not been included in previous software,such as the calculation of the Ce(Ⅳ)/Ce(Ⅲ)ratio for zircons as a method to examine the temporal evolution of oxygen fugacity in the magmatic source for igneous rocks,and the temperature calculator with titanium in zircon and zirconium in rutile.Besides these routines,GeoPyTool also allows users to load any figure from articles or books as a base map.As a Python-based crossplatform program,GeoPyTool works on Windows?,MacOS X?and GNU/Linux.GeoPyTool can do the whole process from data to results without the dependence of Microsoft Excel?,CorelDraw?and other similar software.It takes Excel?XLSX and CSV(Comma Separated Value)as the formats of both the input data source files and the output calculation results files.The figures generated by GeoPyTool can be saved as portable network graphics(PNG),scalable vector graphics(SVG)or portable document format(PDF).Another highlight of GeoPyTool is the multilingual support,the official versio n of GeoPyTool supports both Chinese and English,and additional languages can be loaded through interface files.GeoPyTool is still in the development stage and will be expanded with further geochemical and structural geology routines.As an open source project,all source code of GeoPyTool are accessible on Github(https://github.com/GeoPyTool/GeoPyTool).Users with Python experience can join in the development team and build more complex functions expanding the capabilities of GeoPyTool.
文摘In order to overcome the defects of the dedicated video conference remote control, this paper designs and implements a Qt-based cross-platform video conferencing remote control. The remote control not only implements a full range of video conferencing control functions with an easy-to-use visual interface;but also implement cross-platform feature to allow users to use remote control software on their own equipment. It is economic, convenient and stylish for users. This paper mainly describes the design and implementation of remote control system framework and cross-platform features. Finally, the result in the paper shows: This remote control is reliable and easy to use.
基金Supported by the National High-tech Research and Development Program of China(2013AA041307)the National Natural Science Foundation of China(51478249)the Tsinghua University-Glodon Joint Research Centre for Building Information Model
文摘The building information model/modeling (BIM) technology is currently applied in a broad range of applications and research for facility management, while the BIM-based mobile FM is difficult owing to various factors and environments. For example, the mobile applications usually require frequent cross-equipment compatibility. This paper proposes a reasonable BIM-based FM cross-platform framework and develops a mobile application on the basis of an existing BIM-based FM system. The developed mobile application is applied in a case study of a metro station project in Guangzhou to verify its effectiveness in FM practice. It helps maintenance staff in viewing BIMs, accessing related information, and updating maintenance records in a unique platform. The test results demonstrate that the proposed BIM-based cross-platform framework meet the FM application requirements and supports the extension of FM functions.
文摘Single nucleotide polymorphism (SNP) array is a recently developed biotechnology that is extensively used in the study of cancer genomes. The various available platforms make cross-study validations/comparisons difficult. Meanwhile, sample sizes of the studies are fast increasing, which poses a heavy computational burden to even the fastest PC.Here, we describe a novel method that can generate a platform-independent dataset given SNP arrays from multiple platforms. It extracts the common probesets from individual platforms, and performs cross-platform normalizations and summari-zations based on these probesets. Since different platforms may have different numbers of probes per probeset (PPP), the above steps produce preprocessed signals with different noise levels for the platforms. To handle this problem, we adopt a platform-dependent smoothing strategy, and produce a preprocessed dataset that demonstrates uniform noise levels for individual samples.To increase the scalability of the method to a large number of samples, we devised an algorithm that split the samples into multiple tasks, and probesets into multiple segments before submitting to a parallel computing facility. This scheme results in a drastically reduced computation time and increased ability to process ultra-large sample sizes and arrays.
文摘现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。