The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-...The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
Many mechanical parts of multi-rotor unmanned aerial vehicle(MUAV)can easily produce non-smooth phenomenon and the external disturbance that affects the stability of MUAV.For multi-MUAV attitude systems that experienc...Many mechanical parts of multi-rotor unmanned aerial vehicle(MUAV)can easily produce non-smooth phenomenon and the external disturbance that affects the stability of MUAV.For multi-MUAV attitude systems that experience output dead-zone,external disturbance and actuator fault,a leader-following consensus anti-disturbance and fault-tolerant control(FTC)scheme is proposed in this paper.In the design process,the effect of unknown nonlinearity in multi-MUAV systems is addressed using neural networks(NNs).In order to balance out the effects of external disturbance and actuator fault,a disturbance observer is designed to compensate for the aforementioned negative impacts.The Nussbaum function is used to address the problem of output dead-zone.The designed fault-tolerant controller guarantees that the output signals of all followers and leader are synchronized by the backstepping technique.Finally,the effectiveness of the control scheme is verified by simulation experiments.展开更多
Adaptive control of a flexible beam system preceded by an unknown dead-zonein the driving motor is investigated in state space form. By introducing an important lemma forsimplifying error equation between the flexible...Adaptive control of a flexible beam system preceded by an unknown dead-zonein the driving motor is investigated in state space form. By introducing an important lemma forsimplifying error equation between the flexible beam model and the matching reference model, arobust adaptive control scheme is developed by involving the dead-zone inverse terms. The newadaptive control law ensures global stability of the entire system and achieves desired trackingprecision even when the slopes of the dead-zone are not equal. Simulations performed on a typicalflexible beam system illustrate and clarify the validity of this approach.展开更多
Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were di...Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.展开更多
This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodele...This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input,the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness.Only one adaptive parameter is needed no matter how many unknown parameters there are.The system investigated is more general and there is no need to solve Linear matrix inequality (LMI).Moreover,with our method,some assumptions imposed on nonlinear terms and dead-zone input are relaxed.Finally,simulations illustrate the effectiveness of the proposed adaptive control scheme.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by...The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.展开更多
This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearit...This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.展开更多
A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per. The design is based on the principle ...A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per. The design is based on the principle of sliding mode control and the property of Nussbaum function. The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori. By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded, with tracking errors converging to zero.展开更多
In this paper,an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori kno...In this paper,an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity.Firstly,a dynamic gain is introduced to deal with the unknown growth rate,and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse.Then,by virtue of hyperbolic functions and sign functions,a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system.Moreover,the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy.Finally,two simulation examples are given to verify the effectiveness of the control scheme.展开更多
A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is se...A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.展开更多
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approxi...In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.展开更多
A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinc...A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.展开更多
A non-iterative identification method with parameterization of the unknown dead-zone is proposed for Hammerstein systems in presence of asymmetric dead-zone nonlinearities. The canonical parameterized model which is a...A non-iterative identification method with parameterization of the unknown dead-zone is proposed for Hammerstein systems in presence of asymmetric dead-zone nonlinearities. The canonical parameterized model which is a single expression without segmentation is utilized to describe the dead-zone, based on which a universal-type parametric model can be established to approximate the entire system. This model can be established without separating the nonlinear part from the linear part. The dead-zone parameters and the coefficients in the linear transfer function can be estimated simultaneously according to the proposed algorithm. Numerical experiments are presented to illustrate the effectiveness of the proposed scheme.展开更多
In this paper,a cooperative adaptive control of leader-following uncertain nonlinear multiagent systems is proposed.The communication network is weighted undirected graph with fixed topology.The uncertain nonlinear mo...In this paper,a cooperative adaptive control of leader-following uncertain nonlinear multiagent systems is proposed.The communication network is weighted undirected graph with fixed topology.The uncertain nonlinear model for each agent is a higher-order integrator with unknown nonlinear functions,unknown disturbances and unknown input actuators.Meanwhile,the gains of input actuators are unknown nonlinear functions with unknown sign.Two most common behaviors of input actuators in practical applications are hysteresis and dead-zone.In this paper,backlash-like hysteresis and dead-zone are used to model the input actuators.Using universal approximation theorem proved for neural networks,the unknown nonlinear functions are tackled.The unknown weights of neural networks are derived by proposing appropriate adaptive laws.To cope with modeling errors and disturbances an adaptive robust structure is proposed.Considering Lyapunov synthesis approach not only all the adaptive laws are derived but also it is proved that the closed-loop network is cooperatively semi-globally uniformly ultimately bounded(CSUUB).In order to investigate the effectiveness of the proposed method,it is applied to agents modeled with highly nonlinear mathematical equations and inverted pendulums.Simulation results demonstrate the effectiveness and applicability of the proposed method in dealing with both numerical and practical multi-agent systems.展开更多
A mal-operation case of busbar protection caused by a dead-zone protection abnormality in the Brazilian Midwest Grid on September 19th,2012,is briefly described.The operation process of pilot distance,automatic re-clo...A mal-operation case of busbar protection caused by a dead-zone protection abnormality in the Brazilian Midwest Grid on September 19th,2012,is briefly described.The operation process of pilot distance,automatic re-closure,busbar differential and dead-zone protection,and the emphasis on the logic scheme of dead-zone protection are analyzed.The time delay between the breaker’s main pole and auxiliary contact during re-closure was the main cause in this case,and a defect in the logic allowed it to occur.The differences in dead-zone protection logic between Brazil and China are discussed.A test platform was constructed in the laboratory,and a site simulated experiment was also performed.Possible causes are suggested and test activities are carried out to verify them.Results show the values of practical engineering approaches to the solution.Experience also contributed to avoiding future mal-operations and strengthening the reliability of the protection system,and thus of the power supply in Brazil.展开更多
This work studies the tracking issue of uncertain nonlinear systems.The existence of odd rational powers,multiple unknown parameters and the dead-zone input add many difficulties for control design.During procedures o...This work studies the tracking issue of uncertain nonlinear systems.The existence of odd rational powers,multiple unknown parameters and the dead-zone input add many difficulties for control design.During procedures of the control design,by introducing an appropriate Lyapunov function,utilizing recursive control method and the inequality technique,some appropriate intermediate auxiliary control laws are designed under the hypothesis that nonlinear terms in the system are known.When those nonlinear terms are unknown,by employing the powerful approximation ability of fuzzy systems,the intermediate auxiliary control laws are approximated recursively and used to construct the virtual control.Finally,a new fuzzy adaptive tracking controller is constructed to ensure a small tracking error and the boundedness of all states.In this paper,the overparameterization problem is significantly avoided since only two adaptive laws are adopted.Numerical and practical examples are used to verify the raised theory.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60572055)the Natural Science Foundation of Guangxi Province (No. 0339068), China
文摘The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(62033003,62003098)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)the China Postdoctoral Science Foundation(2019M662813,2020T130124,2020M682614).
文摘Many mechanical parts of multi-rotor unmanned aerial vehicle(MUAV)can easily produce non-smooth phenomenon and the external disturbance that affects the stability of MUAV.For multi-MUAV attitude systems that experience output dead-zone,external disturbance and actuator fault,a leader-following consensus anti-disturbance and fault-tolerant control(FTC)scheme is proposed in this paper.In the design process,the effect of unknown nonlinearity in multi-MUAV systems is addressed using neural networks(NNs).In order to balance out the effects of external disturbance and actuator fault,a disturbance observer is designed to compensate for the aforementioned negative impacts.The Nussbaum function is used to address the problem of output dead-zone.The designed fault-tolerant controller guarantees that the output signals of all followers and leader are synchronized by the backstepping technique.Finally,the effectiveness of the control scheme is verified by simulation experiments.
基金This project is supported by National Natural Science Foundation of China (No. 59885002).
文摘Adaptive control of a flexible beam system preceded by an unknown dead-zonein the driving motor is investigated in state space form. By introducing an important lemma forsimplifying error equation between the flexible beam model and the matching reference model, arobust adaptive control scheme is developed by involving the dead-zone inverse terms. The newadaptive control law ensures global stability of the entire system and achieves desired trackingprecision even when the slopes of the dead-zone are not equal. Simulations performed on a typicalflexible beam system illustrate and clarify the validity of this approach.
基金Supported by the National Natural Science Foundation of China(11372073,11072061)Industrial Robot Basic Component Technology Research and Development Platform,Fujian,China(2014H21010011)。
文摘Under the conditions of joint torque output dead-zone and external disturbance,the trajectory tracking and vibration suppression for a free-floating space robot(FFSR)system with elastic base and flexible links were discussed.First,using the Lagrange equation of the second kind,the dynamic model of the system was derived.Second,utilizing singular perturbation theory,a slow subsystem describing the rigid motion and a fast subsystem corresponding to flexible vibration were obtained.For the slow subsystem,when the width of deadzone is uncertain,a dead-zone pre-compensator was designed to eliminate the impact of joint torque output dead-zone,and an integral sliding mode neural network control was proposed.The integral sliding mode term can reduce the steady state error.For the fast subsystem,an optimal linear quadratic regulator(LQR)controller was adopted to damp out the vibration of the flexible links and elastic base simultaneously.Finally,computer simulations show the effectiveness of the compound control method.
基金supported by National Natural Science Foundation of China (No. 60704009)
文摘This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input,the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness.Only one adaptive parameter is needed no matter how many unknown parameters there are.The system investigated is more general and there is no need to solve Linear matrix inequality (LMI).Moreover,with our method,some assumptions imposed on nonlinear terms and dead-zone input are relaxed.Finally,simulations illustrate the effectiveness of the proposed adaptive control scheme.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(61863034)
文摘The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.
文摘This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.
基金Supported by National Natural Science Foundation of P.R.China(60074013), the Foundation of the Education Bureau of JiangsuProvince (KK0310067&05KJB520152), and the Foundation of Infor-mation Science Subject Group of Yangzhou University (ISG 030606).
文摘A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per. The design is based on the principle of sliding mode control and the property of Nussbaum function. The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori. By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance, the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded, with tracking errors converging to zero.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604), National Natural Science Foundation of China (60974043, 60904010), the Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), the Project of Technology Plan of Fujian Province (2009H0033), and the Project of Technology Plan of Quanzhou (2007G6)
基金supported by the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities.The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity.Firstly,a dynamic gain is introduced to deal with the unknown growth rate,and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse.Then,by virtue of hyperbolic functions and sign functions,a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system.Moreover,the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy.Finally,two simulation examples are given to verify the effectiveness of the control scheme.
基金supported by Program for New Century Excellent Talents in University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘A backstepping method based adaptive robust dead-zone compensation controller is pro- posed for the electro-hydraulic servo systems (EHSSs) with unknown dead-zone and uncertain system parameters. Variable load is seen as a sum of a constant and a variable part. The constant part is regarded as a parameter of the system to be estimated real time. The variable part together with the friction are seen as disturbance so that a robust term in the controller can be adopted to reject them. Compared with the traditional dead-zone compensation method, a dead-zone compensator is incor- porated in the EH$S without constructing a dead-zone inverse. Combining backstepping method, an adaptive robust controller (ARC) with dead-zone compensation is formed. An easy-to-use ARC tuning method is also proposed after a further analysis of the ARC structure. Simulations show that the proposed method has a splendid tracking performance, all the uncertain parameters can be estimated, and the disturbance has been rejected while the dead-zone term is well estimated and compensated.
基金supported by National Natural Science Foundation of China (Nos. 60974139 and 60804021)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(No.2019JQ-711)。
文摘A novel accurate tracking controller is developed for the longitudinal dynamics of Hypersonic Flight Vehicles(HFVs)in the presence of large model uncertainties,external disturbances and actuator nonlinearities.Distinct from the state-of-the-art,besides being continuity,no restrictive conditions have been imposed on the HFVs dynamics.The system uncertainties are skillfully handled by being seen as bounded"disturbance terms".In addition,by means of backstepping adaptive technique,the accurate tracking(i.e.tracking errors converge to zero as time approaches infinity)rather than bounded tracking(i.e.tracking errors converge to residual sets)has been achieved.What’s more,the accurate tracking problems for HFVs subject to actuator dead-zone and hysteresis are discussed,respectively.Then,all signals of closed-loop system are verified to be Semi-Global Uniformly Ultimate Boundness(SGUUB).Finally,the efficacy and superiority of the developed control strategy are confirmed by simulation results.
基金supported by the National Natural Science Foundation of China(Nos.60974046,61011130163)
文摘A non-iterative identification method with parameterization of the unknown dead-zone is proposed for Hammerstein systems in presence of asymmetric dead-zone nonlinearities. The canonical parameterized model which is a single expression without segmentation is utilized to describe the dead-zone, based on which a universal-type parametric model can be established to approximate the entire system. This model can be established without separating the nonlinear part from the linear part. The dead-zone parameters and the coefficients in the linear transfer function can be estimated simultaneously according to the proposed algorithm. Numerical experiments are presented to illustrate the effectiveness of the proposed scheme.
文摘In this paper,a cooperative adaptive control of leader-following uncertain nonlinear multiagent systems is proposed.The communication network is weighted undirected graph with fixed topology.The uncertain nonlinear model for each agent is a higher-order integrator with unknown nonlinear functions,unknown disturbances and unknown input actuators.Meanwhile,the gains of input actuators are unknown nonlinear functions with unknown sign.Two most common behaviors of input actuators in practical applications are hysteresis and dead-zone.In this paper,backlash-like hysteresis and dead-zone are used to model the input actuators.Using universal approximation theorem proved for neural networks,the unknown nonlinear functions are tackled.The unknown weights of neural networks are derived by proposing appropriate adaptive laws.To cope with modeling errors and disturbances an adaptive robust structure is proposed.Considering Lyapunov synthesis approach not only all the adaptive laws are derived but also it is proved that the closed-loop network is cooperatively semi-globally uniformly ultimately bounded(CSUUB).In order to investigate the effectiveness of the proposed method,it is applied to agents modeled with highly nonlinear mathematical equations and inverted pendulums.Simulation results demonstrate the effectiveness and applicability of the proposed method in dealing with both numerical and practical multi-agent systems.
文摘A mal-operation case of busbar protection caused by a dead-zone protection abnormality in the Brazilian Midwest Grid on September 19th,2012,is briefly described.The operation process of pilot distance,automatic re-closure,busbar differential and dead-zone protection,and the emphasis on the logic scheme of dead-zone protection are analyzed.The time delay between the breaker’s main pole and auxiliary contact during re-closure was the main cause in this case,and a defect in the logic allowed it to occur.The differences in dead-zone protection logic between Brazil and China are discussed.A test platform was constructed in the laboratory,and a site simulated experiment was also performed.Possible causes are suggested and test activities are carried out to verify them.Results show the values of practical engineering approaches to the solution.Experience also contributed to avoiding future mal-operations and strengthening the reliability of the protection system,and thus of the power supply in Brazil.
基金supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP)under Grant No.2019L0011the Major Scientific and Technological Innovation Project in Shandong Province under Grant No.2019JZZY011111。
文摘This work studies the tracking issue of uncertain nonlinear systems.The existence of odd rational powers,multiple unknown parameters and the dead-zone input add many difficulties for control design.During procedures of the control design,by introducing an appropriate Lyapunov function,utilizing recursive control method and the inequality technique,some appropriate intermediate auxiliary control laws are designed under the hypothesis that nonlinear terms in the system are known.When those nonlinear terms are unknown,by employing the powerful approximation ability of fuzzy systems,the intermediate auxiliary control laws are approximated recursively and used to construct the virtual control.Finally,a new fuzzy adaptive tracking controller is constructed to ensure a small tracking error and the boundedness of all states.In this paper,the overparameterization problem is significantly avoided since only two adaptive laws are adopted.Numerical and practical examples are used to verify the raised theory.