Directional solidification experiments were carried out for succinonitrile-1.0 wt pct acetone alloy with the orientation of dendritic arrays being not parallel to the direction of the temperature gradient. Experimenta...Directional solidification experiments were carried out for succinonitrile-1.0 wt pct acetone alloy with the orientation of dendritic arrays being not parallel to the direction of the temperature gradient. Experimental results show that there exists an allowable range of primary dendritic spacing under a given growth condition.The average primary spacing depends not only on the current growth conditions but also on the way by which the conditions were achieved. The upper limit of the allowable range becomes smaller in comparison with that with 〈001〉 direction of dendrite arrays parallel to the direction of the temperature gradient, which means that the history-dependence of dendritic growth is weaker under this condition. The lower limit obtained is compared with a self-consistent model, which shows a good agreement with experimental results.展开更多
Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with diffe...Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.展开更多
The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacing...The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacings of primary and secondary dendrite arms decrease, and the dendrite morphologies transit from coarse to superfme dendrite. The secondary dendrite arms trend to be refined and be well developed, and the tertiary dendrite will occur. The predictions of the Kurz/Fisher model and the Hunt/Lu model accord basically with the experimental data for primary dendrite arm spacing. The regression equation of the primary dendrite arm spacings 21 and the cooling rate Vc is λ1 = 0.013 Vc^-0.32. The regression equation of the secondary dendrite arm spacing λ2 and the cooling rate Vc is λ2 = 0.00258 Vc^-0.31, which gives good agreement with the Feurer/Wunderlin model.展开更多
The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing...The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing decreases from 94 μm to 35.8 μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s. The regression equation of the primary dendrite arm spacings A, versus cooling rate is λ1=0.013(GV)-0.32. The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data. The influence of directional solidification rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated.展开更多
The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the pr...The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted.展开更多
Unidirectional solidification of pivalic acid (PVA)-ethanol (Eth) mixture was performed to examine whether an allowable range of primary dendrite spacing definitely exists at a given growth velocity and how the ra...Unidirectional solidification of pivalic acid (PVA)-ethanol (Eth) mixture was performed to examine whether an allowable range of primary dendrite spacing definitely exists at a given growth velocity and how the range is history-dependent. PVA-0.59 wt pct Eth was unidirectionally solidified in the range of growth velocity 0.5-64 μm/s at the temperature gradient of 2.3 K/ram. Sequential change in growth velocity was imposed to determine the upper and lower limits for the allowable range of stable spacing. An allowable range of the steady state primary spacing was observed at a given growth velocity, and the extent of the range seems to be dependent on the degree to which step-increase or step-decrease in growth velocity is accomplished. As the degree of sequential change in growth velocity increases, the history-dependence of the selection for the primary dendrite spacing tends to disappear.展开更多
An experimental apparatus,which has a convection generator and an aid-heater,is developed for the study of the effect of stable laminar liquid flow on the directional solidification process by the use of transparent a...An experimental apparatus,which has a convection generator and an aid-heater,is developed for the study of the effect of stable laminar liquid flow on the directional solidification process by the use of transparent alloy SCN-2wt-% Ace.The flow is perpendicular to primary arms. By in-situ observation and photographing at different specific moments,it has been found that such a flow can cause a great change in primary spacings of constrained columnar crystals:for cells,the spacings become smaller;but for dendrites,they become larger.The former is mainly due to the tilted growth of upstreamside branches,while the latter is mainly due to the coup- ling effect of liquid flow with solutal field around dendrite tips.The faster the liquid flows,the further smaller the cell spacing and the further larger the dendrite spacing.展开更多
The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate te...The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work.展开更多
Directional solidification was performed in Cu 30Ni alloy melt undercooled in the range 105-155 K, and the structure was investigated. The results indicated that the dendrite arm spacings are first dependent on under...Directional solidification was performed in Cu 30Ni alloy melt undercooled in the range 105-155 K, and the structure was investigated. The results indicated that the dendrite arm spacings are first dependent on undercooling prior to nucleation. As undercooling increases, the thickness of thermal diffusion field and solute diffusion field decreases due to the ascent of dendrite growth velocity, and the dendrite remelting occurring in solidification abates. So primary and secondary arm spacing all decrease. At the undercoolings higher than 150 K, however, secondary arms degenerate because of the further closing of the primary branches, and enlarge their spacing. The dendrite arm spacings are also related to the position in specimens. At the two ends of specimens, especially the initial end of solidification, the favorable heat dissipation condition leads to smaller spacings. Primary as well as secondary arm spacings always reach their maximum at the central part of the specimens where the local solidification time is the longest.展开更多
A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and A1. The solidification parameters simulate...A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and A1. The solidification parameters simulated by the finite volume method with commercial software ANASYS FLUENT were applied in the PDAS model to predict the dendrite arm spacing of fusion zone. Dendrite was also examined by the metallographic method to validate the model. Results indicate that the calculated PDAS agrees with metallographic measurements reasonably, especially the Hunt model. PDAS increases apparently with increasing laser power while decreases slightly with increasing welding speed. Increasing laser power increases the secondary dendrite and increasing welding speed increases the microporosity in dendrite.展开更多
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sa...The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.展开更多
The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the con...The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the content of Mo decreases with the increase of Ta in liquid phase after directional solidification,indicating the addition of Ta can reduce the element segregation in alloys.The primary and secondary dendrite arm spacings(PDAS and SDAS)of the DZ411 alloy increase with the addition of Ta,which are consistent with the models by Hunt and Wagner.The increase of PDAS and SDAS can provide enough space for the growth of tertiary dendrite arms,which hinders the growth of unfavorably oriented primary dendrites.As a result,the addition of Ta facilitates the growth of favorably oriented dendrites.More MC carbides andγ-γ'eutectics are formed in the interdendritic regions,which is attributed to the segregation of Ta in the liquid phase.Furthermore,the degree of supersaturation of W,Mo inγmatrix increases with the increase of Ta,thus,the addition of Ta promotes the formation of TCP phase.The addition of Ta also increases the microhardness in both the primary dendrite and interdendritic regions of the alloy,and the microhardness of the primary dendrite is closer to that in interdendritic regions with the increase of Ta.展开更多
Effect of mischmetal addition on the cast microstructure of 6063 alloys has been investigated by means of optical microscopy, TEM and anode filming etc. The results show that there is a critical content of fining dend...Effect of mischmetal addition on the cast microstructure of 6063 alloys has been investigated by means of optical microscopy, TEM and anode filming etc. The results show that there is a critical content of fining dendrite structure by adding mischmetal to 6063 alloys. This critical mischmetal content is about 0.15%. Only when the mischmetal content is above 0.15%, the secondary dendrite arm spacing decreased and eutectic structure fined. The cast grain is obviously refined when the content of mischmetal is lower. Consideration from the cast structure, the suitable mischmetal content in 6063 alloys is 0.20%.展开更多
In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the sol...In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the solid-liquid interface, and the nucleation and propagation process of crack were studied. It is shown that the bending deformation of the interface results in the temperature field change in the front edge of solid-liquid interface, and the occurrence of temperature gradient along drawing direction results in the growth of secondary dendrites. The initial crack formed during the middle and final stage of solidification may extend to the surface of the casting slab and become an internal crack. The results of the theoretical analysis are basically in agreement with that of the experiment.展开更多
The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of inter...The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of intermetallic compounds(IMCs)and on the resulting properties were investigated.Corrosion and tensile properties were determined on samples solidified under a wide range of T along the length of a directionally solidified Al−6wt.%Cu−5.0wt.%Ni alloy casting.Experimental growth laws were derived relating the evolution of primary(λ_(1))and secondary(λ_(2))dendritic spacings with T and V_(L).The elongation to fracture(δ)and the ultimate tensile strength(σ_(U))were correlated with the inverse of the square root of λ_(1) along the length of the casting by Hall−Petch type experimental equations.The reinforcing effect provided by the addition of Ni in the alloy composition is shown to surpass that provided by the refinement of the dendritic microstructure.The highest corrosion resistance is associated with a microstructure formed by thin IMCs evenly distributed in the interdendritic regions,typical of samples that are solidified under higher T.展开更多
The effects of solidification variables on the as-cast microstructures of nickel-base single crystal superalloy DD3 have been investigated by using the modified Bridgman apparatus. The experiments were performed under...The effects of solidification variables on the as-cast microstructures of nickel-base single crystal superalloy DD3 have been investigated by using the modified Bridgman apparatus. The experiments were performed under a thermal gradient of approximately 45 K.cm-1 and at withdrawal rates ranging from 30 to 200 m.s-1. The experimental results show that the primary and secondary dendritic arm spacings (PDAS and SDAS) decrease when the withdrawal rate is increased. Compared with the theoretical models of PDAS, the results are in good agreement with Trivedi's model. The relationships of PDAS and SDAS with withdrawal rates can be described as ;λ1 = 649.7V-0.24±0.02 and λ2 = 281 V-0.32±0.03, respectively. In addition, the size of the λ2 phase significantly decreases with increasing withdrawal rate.展开更多
The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their mic...The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their microstructural evolution and mechanical properties were analyzed. Results indicate that the LAM830 alloy mainly consists of α-Mg, β-Li, Al2Mn3, and LiMgAl2 phases. Sr addition results in the precipitation of Al-Sr. Moreover, Sr addition results in a fact that the secondary dendrite arm spacing(DAS) of the primary α-Mg phase is obvious refined. Microstructure of the investigated alloys is further refined as a result of the hot extrusion treatment. The content and morphology of the secondary phases have important effects on the mechanical properties of the alloys. The as-extruded LAM830-0.5Sr alloy exhibits an optimal elongation of 22.43% and as-extruded LAM830-0.75 Sr alloy shows an optimal tensile strength of 265.46 MPa.展开更多
Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dend...Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dendrite arm spacings increase from the edge of the billet to the center and decrease obviously with increasing electromagnetic torque, which will be beneficial to refine the solidification structure and enlarge the equiaxed crystal zone. The ratio of equiaxed crystal increases by 15.9% with the electromagnetic torque increasing from 230 to 400 cN·cm. The increase of stirring intensity can improve the cooling rate and the impact of M-EMS on it reduces from the edge of the billet to the central area, where the cooling rates are similar at different torques. The closer to the central area, the less the influence of M-EMS on the cooling rate is. The ratio of the primary to secondary dendrite arm spacing is approximately 2.0, namely, λ1≈2λ2, and is constant irrespective of the stirring intensity and position of the billet. Original position analysis (OPA) results indicate that the center segregation of the billet is greatly improved, and the more uniform and compact solidification structure will be obtained with the increase of stirring intensity.展开更多
Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A35...Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.展开更多
Based on the solidification heat transfer model and CAFÉmodel,the solidification structure of GCr15 bloom alloy was studied.Using nail shooting and acid etching experiments,the solidification models were verified...Based on the solidification heat transfer model and CAFÉmodel,the solidification structure of GCr15 bloom alloy was studied.Using nail shooting and acid etching experiments,the solidification models were verified.The secondary dendrite arm spacing(SDAS)model of GCr15 was obtained by simulation calculation and metallographic observation.With the increase of casting speed,the SDAS,equiaxed crystal ratio(ECR)and average grain size increase.With the rise of superheat,the SDAS increases in the 20-70 mm of thickness and decreases in the 80-160 mm of thickness.The ECR decreases and the average grain size increases with the increase of superheat.With the increase of specific water flow,both the SDAS and ECR decrease.The minimum average grain size is obtained when the specific water flow is 0.20 L·kg^(-1).The central carbon segregation index is reduced from 1.11 to 1.075.展开更多
基金This work was supported by the National Natural Science Foundation of China under grant Nos. 50331010,50201012, and 50471065.
文摘Directional solidification experiments were carried out for succinonitrile-1.0 wt pct acetone alloy with the orientation of dendritic arrays being not parallel to the direction of the temperature gradient. Experimental results show that there exists an allowable range of primary dendritic spacing under a given growth condition.The average primary spacing depends not only on the current growth conditions but also on the way by which the conditions were achieved. The upper limit of the allowable range becomes smaller in comparison with that with 〈001〉 direction of dendrite arrays parallel to the direction of the temperature gradient, which means that the history-dependence of dendritic growth is weaker under this condition. The lower limit obtained is compared with a self-consistent model, which shows a good agreement with experimental results.
基金Project(50395100)supported by the National Natural Science Foundation of ChinaProject(NCET-07-0692)supported by the New Century Talents Program of the Ministry of Education,ChinaProject(34-TP-2009)supported by Open Project of State Key Laboratory of Solidification Processing,China
文摘Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.
基金supported by the National Natural Science Foundation of China (Nos.50771081,50827102)the National Basic Research Program of China (No.2006CB605202)
文摘The dendrite morphologies and spacings of directionally solidified DZ125 superalloy were investigated under high thermal gradient about 500 K/cm. The results reveal that, with increasing cooling rate, both the spacings of primary and secondary dendrite arms decrease, and the dendrite morphologies transit from coarse to superfme dendrite. The secondary dendrite arms trend to be refined and be well developed, and the tertiary dendrite will occur. The predictions of the Kurz/Fisher model and the Hunt/Lu model accord basically with the experimental data for primary dendrite arm spacing. The regression equation of the primary dendrite arm spacings 21 and the cooling rate Vc is λ1 = 0.013 Vc^-0.32. The regression equation of the secondary dendrite arm spacing λ2 and the cooling rate Vc is λ2 = 0.00258 Vc^-0.31, which gives good agreement with the Feurer/Wunderlin model.
基金supported by the National Natural Science Foundation of China(50771081,50827102)the National Basic Research Program of China(2006CB605202)
文摘The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing decreases from 94 μm to 35.8 μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s. The regression equation of the primary dendrite arm spacings A, versus cooling rate is λ1=0.013(GV)-0.32. The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data. The influence of directional solidification rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated.
基金supported by the China Postdoctoral Science Foundation (No. 20110491492)National Natural Science Foundation of China (No. 50765005)the Innovative Group of Science and Technology of College of Jiangxi Province,China (No. 00008713)
文摘The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted.
文摘Unidirectional solidification of pivalic acid (PVA)-ethanol (Eth) mixture was performed to examine whether an allowable range of primary dendrite spacing definitely exists at a given growth velocity and how the range is history-dependent. PVA-0.59 wt pct Eth was unidirectionally solidified in the range of growth velocity 0.5-64 μm/s at the temperature gradient of 2.3 K/ram. Sequential change in growth velocity was imposed to determine the upper and lower limits for the allowable range of stable spacing. An allowable range of the steady state primary spacing was observed at a given growth velocity, and the extent of the range seems to be dependent on the degree to which step-increase or step-decrease in growth velocity is accomplished. As the degree of sequential change in growth velocity increases, the history-dependence of the selection for the primary dendrite spacing tends to disappear.
文摘An experimental apparatus,which has a convection generator and an aid-heater,is developed for the study of the effect of stable laminar liquid flow on the directional solidification process by the use of transparent alloy SCN-2wt-% Ace.The flow is perpendicular to primary arms. By in-situ observation and photographing at different specific moments,it has been found that such a flow can cause a great change in primary spacings of constrained columnar crystals:for cells,the spacings become smaller;but for dendrites,they become larger.The former is mainly due to the tilted growth of upstreamside branches,while the latter is mainly due to the coup- ling effect of liquid flow with solutal field around dendrite tips.The faster the liquid flows,the further smaller the cell spacing and the further larger the dendrite spacing.
文摘The influence of pure La, pure Ce, (La+Ce) mischmetal on the dendritical arm space(LDAS) of ZL105 alloy in cylinderical casting was studied. The effects of adding amount of (La+ Ce) mischmetal on LDAs and ultimate tensile strength(b) were investigated, and the relationship between b and LDAS was founded. (La+Ce) mischmetal has stronger ability to refine LDAs than pure La or pure Ce. The proper adding amounts of it is 0.15% (mass fraction). LDAs has a remarkable effect on ah of casting, which can be predicted by the regression equation obtained in this work.
文摘Directional solidification was performed in Cu 30Ni alloy melt undercooled in the range 105-155 K, and the structure was investigated. The results indicated that the dendrite arm spacings are first dependent on undercooling prior to nucleation. As undercooling increases, the thickness of thermal diffusion field and solute diffusion field decreases due to the ascent of dendrite growth velocity, and the dendrite remelting occurring in solidification abates. So primary and secondary arm spacing all decrease. At the undercoolings higher than 150 K, however, secondary arms degenerate because of the further closing of the primary branches, and enlarge their spacing. The dendrite arm spacings are also related to the position in specimens. At the two ends of specimens, especially the initial end of solidification, the favorable heat dissipation condition leads to smaller spacings. Primary as well as secondary arm spacings always reach their maximum at the central part of the specimens where the local solidification time is the longest.
基金Supported by the National Natural Science Foundation of China(No.50975195)
文摘A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and A1. The solidification parameters simulated by the finite volume method with commercial software ANASYS FLUENT were applied in the PDAS model to predict the dendrite arm spacing of fusion zone. Dendrite was also examined by the metallographic method to validate the model. Results indicate that the calculated PDAS agrees with metallographic measurements reasonably, especially the Hunt model. PDAS increases apparently with increasing laser power while decreases slightly with increasing welding speed. Increasing laser power increases the secondary dendrite and increasing welding speed increases the microporosity in dendrite.
基金the DST–Fly Ash unit, New Delhi, India for their financial support (Grant Ref No.FAU/DST/600(52)/2012-13)Advance Analytical laboratory, Andhra University, India for the support in SEM–EDS studies
文摘The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.
基金This study was funded by the National Natural Science Foundation of China(Grant No.51871118)the fund of the State Key Laboratory of Solidification Processing in NPU,(Grant No.SKLSP202204)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-ey15).
文摘The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the content of Mo decreases with the increase of Ta in liquid phase after directional solidification,indicating the addition of Ta can reduce the element segregation in alloys.The primary and secondary dendrite arm spacings(PDAS and SDAS)of the DZ411 alloy increase with the addition of Ta,which are consistent with the models by Hunt and Wagner.The increase of PDAS and SDAS can provide enough space for the growth of tertiary dendrite arms,which hinders the growth of unfavorably oriented primary dendrites.As a result,the addition of Ta facilitates the growth of favorably oriented dendrites.More MC carbides andγ-γ'eutectics are formed in the interdendritic regions,which is attributed to the segregation of Ta in the liquid phase.Furthermore,the degree of supersaturation of W,Mo inγmatrix increases with the increase of Ta,thus,the addition of Ta promotes the formation of TCP phase.The addition of Ta also increases the microhardness in both the primary dendrite and interdendritic regions of the alloy,and the microhardness of the primary dendrite is closer to that in interdendritic regions with the increase of Ta.
文摘Effect of mischmetal addition on the cast microstructure of 6063 alloys has been investigated by means of optical microscopy, TEM and anode filming etc. The results show that there is a critical content of fining dendrite structure by adding mischmetal to 6063 alloys. This critical mischmetal content is about 0.15%. Only when the mischmetal content is above 0.15%, the secondary dendrite arm spacing decreased and eutectic structure fined. The cast grain is obviously refined when the content of mischmetal is lower. Consideration from the cast structure, the suitable mischmetal content in 6063 alloys is 0.20%.
基金supported by the National Natural Science Foundation of China(No.50374043).
文摘In view of the periodic bending deformation of solid-liquid interface in the solidification process for continuous casting slab, the variation of temperature gradient and dendritic spacing in the front edge of the solid-liquid interface, and the nucleation and propagation process of crack were studied. It is shown that the bending deformation of the interface results in the temperature field change in the front edge of solid-liquid interface, and the occurrence of temperature gradient along drawing direction results in the growth of secondary dendrites. The initial crack formed during the middle and final stage of solidification may extend to the surface of the casting slab and become an internal crack. The results of the theoretical analysis are basically in agreement with that of the experiment.
基金CNPq-National Council for Scientific and Technological Development(Grant:407871/2018-7)CAPES-Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,Brazil,for the financial support。
文摘The effects of the addition of 5.0 wt.%Ni to an Al−6wt.%Cu alloy on the solidification cooling rate(T),growth rate(V_(L)),length scale of the representative phase of the microstructure,morphology/distribution of intermetallic compounds(IMCs)and on the resulting properties were investigated.Corrosion and tensile properties were determined on samples solidified under a wide range of T along the length of a directionally solidified Al−6wt.%Cu−5.0wt.%Ni alloy casting.Experimental growth laws were derived relating the evolution of primary(λ_(1))and secondary(λ_(2))dendritic spacings with T and V_(L).The elongation to fracture(δ)and the ultimate tensile strength(σ_(U))were correlated with the inverse of the square root of λ_(1) along the length of the casting by Hall−Petch type experimental equations.The reinforcing effect provided by the addition of Ni in the alloy composition is shown to surpass that provided by the refinement of the dendritic microstructure.The highest corrosion resistance is associated with a microstructure formed by thin IMCs evenly distributed in the interdendritic regions,typical of samples that are solidified under higher T.
基金supported by the National Basic Research Program of China(Nos.2010CB631202 and 2011CB610406)the National Natural Science Foundation of China(Nos.50827102,51171151 and 50931004)+1 种基金the Aeronautical Science Foundation of China(No.2010ZE53048)the China Post-doctoral Science Foundation Funded Project(No.20100481361)
文摘The effects of solidification variables on the as-cast microstructures of nickel-base single crystal superalloy DD3 have been investigated by using the modified Bridgman apparatus. The experiments were performed under a thermal gradient of approximately 45 K.cm-1 and at withdrawal rates ranging from 30 to 200 m.s-1. The experimental results show that the primary and secondary dendritic arm spacings (PDAS and SDAS) decrease when the withdrawal rate is increased. Compared with the theoretical models of PDAS, the results are in good agreement with Trivedi's model. The relationships of PDAS and SDAS with withdrawal rates can be described as ;λ1 = 649.7V-0.24±0.02 and λ2 = 281 V-0.32±0.03, respectively. In addition, the size of the λ2 phase significantly decreases with increasing withdrawal rate.
基金Project(2007CB613702)supported by the National Basic Research Program of ChinaProject(2008BB4323)supported by the Natural Science Foundation of Chongqing Science and Technology Commission,ChinaProject(2010DFR50010)supported by the International Scientific and Technological Cooperation Projects,China
文摘The as-cast Mg-8Li-3Al-0.5Mn-xSr(LAM830-xSr, x=0-1.0) alloys were designed and prepared in a vacuum induction furnace under controlled argon atmosphere. The alloys were then processed by hot extrusion, and their microstructural evolution and mechanical properties were analyzed. Results indicate that the LAM830 alloy mainly consists of α-Mg, β-Li, Al2Mn3, and LiMgAl2 phases. Sr addition results in the precipitation of Al-Sr. Moreover, Sr addition results in a fact that the secondary dendrite arm spacing(DAS) of the primary α-Mg phase is obvious refined. Microstructure of the investigated alloys is further refined as a result of the hot extrusion treatment. The content and morphology of the secondary phases have important effects on the mechanical properties of the alloys. The as-extruded LAM830-0.5Sr alloy exhibits an optimal elongation of 22.43% and as-extruded LAM830-0.75 Sr alloy shows an optimal tensile strength of 265.46 MPa.
文摘Effects of mold electromagnetic stirring (M-EMS) on the solidification structure of 45# steel billet were investigated by examination of interdendritic corrosion. The results show that the primary and secondary dendrite arm spacings increase from the edge of the billet to the center and decrease obviously with increasing electromagnetic torque, which will be beneficial to refine the solidification structure and enlarge the equiaxed crystal zone. The ratio of equiaxed crystal increases by 15.9% with the electromagnetic torque increasing from 230 to 400 cN·cm. The increase of stirring intensity can improve the cooling rate and the impact of M-EMS on it reduces from the edge of the billet to the central area, where the cooling rates are similar at different torques. The closer to the central area, the less the influence of M-EMS on the cooling rate is. The ratio of the primary to secondary dendrite arm spacing is approximately 2.0, namely, λ1≈2λ2, and is constant irrespective of the stirring intensity and position of the billet. Original position analysis (OPA) results indicate that the center segregation of the billet is greatly improved, and the more uniform and compact solidification structure will be obtained with the increase of stirring intensity.
基金financially supported by the National Natural Science Foundation of China (No. 51174177)
文摘Commercial A356 alloy was refined with a homemade A1-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51774030 and U1860104)the Fundamental Research Funds for the Central Universities(FRF-TP-20-029A1)。
文摘Based on the solidification heat transfer model and CAFÉmodel,the solidification structure of GCr15 bloom alloy was studied.Using nail shooting and acid etching experiments,the solidification models were verified.The secondary dendrite arm spacing(SDAS)model of GCr15 was obtained by simulation calculation and metallographic observation.With the increase of casting speed,the SDAS,equiaxed crystal ratio(ECR)and average grain size increase.With the rise of superheat,the SDAS increases in the 20-70 mm of thickness and decreases in the 80-160 mm of thickness.The ECR decreases and the average grain size increases with the increase of superheat.With the increase of specific water flow,both the SDAS and ECR decrease.The minimum average grain size is obtained when the specific water flow is 0.20 L·kg^(-1).The central carbon segregation index is reduced from 1.11 to 1.075.