Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has num...Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method.The governing equations are the momentum and energy equations for the gas and the particle equations of motion.The effects of the annulus size,particle diameter,the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows.Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient,deposition distance,and the ratio of inner to outer radius,but decreases with increasing particle size.It has been found that by taking into account the effect of developing flow at the entrance region,higher deposition efficiency was obtained,than fully developed flow.展开更多
The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate...The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.展开更多
文摘Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method.The governing equations are the momentum and energy equations for the gas and the particle equations of motion.The effects of the annulus size,particle diameter,the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows.Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient,deposition distance,and the ratio of inner to outer radius,but decreases with increasing particle size.It has been found that by taking into account the effect of developing flow at the entrance region,higher deposition efficiency was obtained,than fully developed flow.
文摘The study of flame development characteristics is crucial in the study of flame propagation, extinction, and for the investigation of combustion cyclic variability in SI engine. The aim of this study is to investigate the characteristics of flame development in a lean-stratified combustion of Natural Gas Engine (CNG) in a single cylinder direct injection (DI) engine at a specific motor speed, and fixed injection timing and air-fuel ratio by varying only the swirl level at the intake. The engine was set to run at 1800 rpm with half-load throttled. The ignition advance was set at 21.5 BTDC, and to create an overall lean and stratified mixture, injection timing was set at 61 BTDC with an air-fuel-ratio of 40.5 (λ=2.35). Variable turbulent flow conditions near spark-plug were created by positioning the swirl control valves (SCV) at the intake port just before the two intake valves. This was done by setting one of the valves at full open position and the other one at 0% closed, 50% closed and 100% closed positions in order to achieve medium tumble (no swirl), medium swirl and high swirl flows in the cylinder, respectively. An endoscope and CCD camera assembly was utilized to capture the flame images from the tumble plane at the intake side of the engine ever), 2 CA degrees after ignition timing (AIT) for 40 CAs. It was observed that flame growth rate and flame convection velocity are increasing with increasing the swirl level. The total combustion duration is, thus, shorter in swirl induced combustion than without. However, COV in IMEP is greater in swirl induced flow cases than the medium tumble.