期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Two dimensional MoS_(2) finding its way towards constructing high-performance alkaline recovery membranes
1
作者 Xinxin Li Hongwei Shao +4 位作者 Shichao Zhang Yong Li Jingjing Gu Qiang Huang Jin Ran 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期155-164,共10页
The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar mem... The available alkaline recovery membranes are currently dominated by polymeric materials,but they suffer from a permeation-selectivity trade-off and inferior chemical resistance.Robust two dimensional(2D) lamellar membranes with sub-nanometer wide channels are promising candidates for discerning OH^(-)and other anions.Here,we report the development of alkaline recycling membranes through stacking MoS_(2) nanosheets.Benefiting from the ordered and narrow 2D channels,MoS_(2) membranes show excellent alkaline recovery performances.The OH^(-)dialysis coefficient (U_(OH)-) and separation factor (S)towards simulated OH^(-) and WO_(4)^(2-) across the 500 nm thick MoS_(2) laminates reach 6.9×10^(-3)m·h^(-1)and 34.3 respectively.Furthermore,the chemical environments of MoS_(2) laminates were modulated by intercalating ionic poly(sodium 4-styrene sulfonate)(PSS@MoS_(2)).The U_(OH)-and S values of PSS@MoS_(2) membrane further improve to 11.7×10^(-3)m·h^(-1)and 49.8 respectively.Besides,both MoS_(2) and PSS@MoS_(2) membranes exhibit promising stability. 展开更多
关键词 Alkaline recovery diffusion dialysis Two dimensional membranes MoS_(2) Poly(sodium 4-styrene sulfonate)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部