Using the master equation approach to a V-type three-level atom inside a high-finesse single-mode cavity in the strong coupling condition, we demonstrate the approximation of eliminating populations of atomic excited ...Using the master equation approach to a V-type three-level atom inside a high-finesse single-mode cavity in the strong coupling condition, we demonstrate the approximation of eliminating populations of atomic excited states, which is widely used in the field of the atom cavity systems [Hechenblaikner G, Gangl M, Horak P and Ritsch H 1998 Phys. Rev. A 58 3030]; Liu L W, Tan T and Xu Y 2008 J. Mod. Opt. 56 968; Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338. This is reflected in the deviation of the population 5, of which the value is 10^-3 - 10^-2. We further find the deviation of the dipole force and demonstrate that the deviation of atomic population will not notably affect the dipole force of the atom in the strong coupling condition. A relevant experimental case is also presented.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10704031)the Fundamental Research Funds for the Central Universities,China (Grant No.lzujbky-2010-75)
文摘Using the master equation approach to a V-type three-level atom inside a high-finesse single-mode cavity in the strong coupling condition, we demonstrate the approximation of eliminating populations of atomic excited states, which is widely used in the field of the atom cavity systems [Hechenblaikner G, Gangl M, Horak P and Ritsch H 1998 Phys. Rev. A 58 3030]; Liu L W, Tan T and Xu Y 2008 J. Mod. Opt. 56 968; Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338. This is reflected in the deviation of the population 5, of which the value is 10^-3 - 10^-2. We further find the deviation of the dipole force and demonstrate that the deviation of atomic population will not notably affect the dipole force of the atom in the strong coupling condition. A relevant experimental case is also presented.