期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Geological and surfacial processes and major disaster effects in the Yellow River Basin 被引量:13
1
作者 Hengxing LAN Jianbing PENG +5 位作者 Yanbo ZHU Langping LI Baotian PAN Qiangbing HUANG Junhua LI Qiang ZHANG 《Science China Earth Sciences》 SCIE EI CSCD 2022年第2期234-256,共23页
The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterize... The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterized by varied types,extensive distributions, and sudden occurrences. In addition, major disasters in the YRB usually evolve into disaster chains that cause severe consequences. Therefore, major disasters in the YRB destroy ecologies and environments and influence geological and ecological safety in the basin. This paper systematically reviews research on geological and surface processes, major disaster effects, and risk mitigation in the YRB, discusses the trends and challenges of relevant research, analyzes the key scientific problems that need to be solved, and suggests prospects for future research based on the earth system science concept. Themes of research that should be focused on include geological, surface and climatic processes in the YRB and their interlinking disaster gestation mechanisms;formation mechanisms and disaster chain evolutions of giant landslides in the upper reach of the YRB;mechanisms and disaster chain effects of loess water-soil disasters in the middle reach of the YRB;occurrence patterns and amplifying effects of giant flood chains in the lower reach of the YRB;and risk mitigations of major disasters in the YRB. Key scientific problems that need to be solved are as follows: how to reveal the geological, surface and climatic processes that are coupled and interlinked with gestation mechanisms of major disasters;how to clarify the mutual feedback effects between major disasters and ecology;and how to develop a human-environmental harmony-based integrated risk mitigation system for major disasters. Prospects for future studies that follow the earth system science concept include the following: highlighting interdisciplinary research to reveal the interlinked disaster gestation mechanisms of the geology, surface and climate in the YRB in the past, present, and future;forming theories to clarify the regional patterns, dynamic mechanisms, and mutual-feedback effects between disaster chains and ecology in the YRB on land and in rivers in the region;solving technological bottlenecks to develop assessment models and mitigation theories for integrated risks in the YRB by following the human-environment harmony concept;and finally, establishing a demonstratable application pattern characterized by "whole-basin coverage" and "zonal controls", thereby guaranteeing ecological and geological safety in the basin and providing scientific support for ecological conservation and high-quality development of the YRB. 展开更多
关键词 Yellow River Basin Geological process Geomorphological evolution Major disaster effect Ecology and environment Risk mitigation
原文传递
The formation of the Wulipo landslide and the resulting debris flow in Dujiangyan City, China 被引量:14
2
作者 CHEN Xing-zhang CUI Yi-fei 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1100-1112,共13页
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the follow... The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably. 展开更多
关键词 Landslide Debris flow disaster chain effect Heavy rainfall Geological hazard area Wenchuan earthquake
原文传递
Integration system research and development for three-dimensional laser scanning information visualization in goaf 被引量:1
3
作者 罗周全 黄俊杰 +2 位作者 罗贞焱 汪伟 秦亚光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1985-1994,共10页
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo... An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable. 展开更多
关键词 GOAF laser scanning visualization integration system 1 Introduction The goaf formed through underground mining of mineral resources is one of the main disaster sources threatening mine safety production [1 2]. Effective implementation of goaf detection and accurate acquisition of its spatial characteristics including the three-dimensional morphology the spatial position as well as the actual boundary and volume are important basis to analyze predict and control disasters caused by goaf. In recent years three-dimensional laser scanning technology has been effectively applied in goaf detection [3 4]. Large quantities of point cloud data that are acquired for goaf by means of the three-dimensional laser scanning system are processed relying on relevant engineering software to generate a three-dimensional model for goaf. Then a general modeling analysis and processing instrument are introduced to perform subsequent three-dimensional analysis and calculation [5 6]. Moreover related development is also carried out in fields such as three-dimensional detection and visualization of hazardous goaf detection and analysis of unstable failures in goaf extraction boundary acquisition in stope visualized computation of damage index aided design for pillar recovery and three-dimensional detection
下载PDF
The Effects of Meteorological Disaster Assessmenton Disaster Protection and Reduction
4
《Natural Disaster Reduction in China》 1997年第3期97-100,共4页
关键词 The effects of Meteorological disaster Assessmenton disaster Protection and Reduction
原文传递
Conclusions on the Implementation of Regulation of the National Significant Seismic Monitoring and Protection Regions from 1996 to 2012 in the Chinese Mainland
5
作者 Chao Hongtai Gao Mengtan +7 位作者 Li Bo Chen Shijun Liang Kaili Ma Yuxiang Wang Feng Wu Guochun Lang Cong Wu Xinyan 《Earthquake Research in China》 CSCD 2015年第1期8-20,共13页
The regulation of the National Significant Seismic Monitoring and Protection Regions(NSSMPR for short) is defined by the Law of the Peoples Republic of China on Protecting Against and Mitigating Earthquake Disasters.T... The regulation of the National Significant Seismic Monitoring and Protection Regions(NSSMPR for short) is defined by the Law of the Peoples Republic of China on Protecting Against and Mitigating Earthquake Disasters.The first stage of implementation of the regulation of NSSMPR in the Chinese mainland was finished from 1996 to 2005.The second stage is being carried on from 2006 to 2020.With the support of the National Social Science Foundation,this paper follows up and evaluates the implementation of the regulation of NSSMPR from 1996 to 2012 in the Chinese mainland.Based on analysis of earthquake examples and investigation data,we find that the effect of disaster mitigation is good,and on this basis,some suggestions are proposed to improve the regulation of NSSMPR. 展开更多
关键词 The National Significant Seismic Monitoring and Protection Regions Legalregulation Effect and progress Measures on protecting against andmitigating earthquake disasters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部