Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased intern...Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a...Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.展开更多
The radiofrequency(RF) inductive cathode has great prospects in space missions with long mission cycles, large speed increments, and rapid response requirements as the main electron source and neutralizer in Hall thru...The radiofrequency(RF) inductive cathode has great prospects in space missions with long mission cycles, large speed increments, and rapid response requirements as the main electron source and neutralizer in Hall thrusters and ion thrusters. This paper proposes a comprehensive multi-physics RF inductive cathode model in which the RF electromagnetic field, electrostatic field for extracting electrons, flow field, plasma transport and electrochemical reaction process are all accounted for. Each physical field mentioned above can form a closed partial differential equation. The two-dimensional finite element code COMSOL is used to solve the multi-physics model. With this model, the formation process of the anode spot is exhibited and demonstrates the non-bipolar flow theory in practice. The simulation results demonstrate that the current jump in the RF inductive cathode is caused by the anode spot. Furthermore, the influences of preset discharge parameters such as RF power, bias voltage and actuating gas flow as well as structural parameters like the coil structure, discharge chamber size and ion collector area, emission hole size, distance between the anode target and the emission hole etc on the cathode performance are investigated, and some important optimal parameters are proposed.展开更多
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large...Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems.展开更多
To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulate...To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements.展开更多
Poly(ethylene oxide)(PEO)-based solid polymer electrolyte is always the most promising candidate for preparing thinner, lighter and safer lithium-ion batteries. However, the lithium dendrites growth of lithium anode a...Poly(ethylene oxide)(PEO)-based solid polymer electrolyte is always the most promising candidate for preparing thinner, lighter and safer lithium-ion batteries. However, the lithium dendrites growth of lithium anode and the high-voltage oxidation of cathode are easy to cause the PEO-based battery failure.The way to deal with the different challenges on both sides of the anode and cathode is pursued all the time. In this study, we reported a new strategy to construct the PVDF/PEO/PVDF three-layer structure for solid polymer electrolyte(marked as PVDF@PEO) using PVDF as the functional “skin”. The PVDF@PEO electrolyte can effectively prevent from the lithium dendrites, and shows a stable cycling life over1000 h in the Li/PVDF@PEO/Li cell. In addition, the PVDF@PEO electrolyte exhibits higher oxidation resistance and can be matched with high-voltage LiCoO_(2) cathode. The Li/PVDF@PEO/LiCoO_(2) cell delivered a specific capacity of about 150 m Ah g^(-1) over 150 cycles and maintained good cycling stability. Our research provides insights that the polymer electrolytes constructed with PVDF functional “skin” can simultaneously meet the challenges of both anode and cathode in solid-state lithium-ion batteries(SSLIBs).展开更多
Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge pot...Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge potential.However,growing binder-free Si NW anodes with adequate mass loading and stable capacity is severely limited by the low surface area of planar current collectors(CCs),and is particularly challenging to achieve on standard pure-Cu substrates due to the ubiquitous formation of Li+inactive silicide phases.Here,the growth of densely-interwoven In-seeded Si NWs is facilitated by a thin-film of copper-silicide(CS)network in situ grown on a Cu-foil,allowing for a thin active NW layer(<10μm thick)and high areal loading(≈1.04 mg/cm^(2))binder-free electrode architecture.The electrode exhibits an average Coulombic efficiency(CE)of>99.6%and stable performance for>900 cycles with≈88.7%capacity retention.More significantly,it delivers a volumetric capacity of≈1086.1 m A h/cm^(3)at 5C.The full-cell versus lithium manganese oxide(LMO)cathode delivers a capacity of≈1177.1 m A h/g at 1C with a stable rate capability.This electrode architecture represents significant advances toward the development of binder-free Si NW electrodes for LIB application.展开更多
This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A r...This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.展开更多
Due to concerns regarding the future availability,cost,and safety of lithium in Li-ion batteries(LIBs),researchers are exploring alternative chemistries such as Na-ion,Li-S,Li-air,and multivalent ion technologies.Mult...Due to concerns regarding the future availability,cost,and safety of lithium in Li-ion batteries(LIBs),researchers are exploring alternative chemistries such as Na-ion,Li-S,Li-air,and multivalent ion technologies.Multivalent ion technologies,which utilize divalent or trivalent ions,like Mg^(2+),Ca^(2+),and Al^(3+),show promise in achieving greater energy densities than LIBs due to their ability to deposit uniformly on anodes and intercalate into cathodes.While magnesium-ion batteries(MIBs) have been the primary area of research for multivalent ion batteries,the cost-effectiveness and abundance of calcium have sparked a growing interest in calcium-ion batteries(CIBs) in recent years.Compared to LIBs,CIBs have the potential to provide longer cycle life,enhanced safety,and increased energy densities.However,the development of CIBs comes with several challenges,such as finding suitable electrode and electrolyte materials that ensure the stability and safety of the battery.The primary hurdle in CIBs lies in the plating/stripping process.There is a significant hindrance preventing the occurrence of plating/stripping in CIBs,which lies in the formation of a passive layer resulting from the decomposition of the electrolyte.The objective of this article is to examine the advancements made in CIBs.Additionally,it aims to comprehensively assess the mechanisms and materials employed in various battery components,as well as the obstacles encountered in CIBs.This includes recent advancements in electrode materials,electrolytes,cell configurations,and the challenges and opportunities for enhancing the performance and commercial viability of CIBs.展开更多
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and...Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.展开更多
Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restr...Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO_(2)cathode.Constructing suitable multifunctional electrodes for dendritefree anodes and kinetics-enhanced CO_(2)cathodes is considered one of the most important ways to advance the practical application of Na-CO_(2)batteries.Herein,RuO2 nanoparticles encapsulated in carbon paper(RuCP)are rationally designed and employed as both Na anode host and CO_(2)cathode in Na-CO_(2)batteries.The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+distribution and dendrite-free sodium structure at the anode,as well as strengthen discharge and charge kinetics at the cathode.The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces,delivering enhanced Coulombic efficiency of 99.5%and cycling stability near 1500 cycles.Meanwhile,Na-CO_(2)batteries with RuCP cathode demonstrated excellent cycling stability(>350 cycles).Significantly,implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO_(2)battery with long-duration cyclability,offering inspiration for extensive practical uses of Na-CO_(2)batteries.展开更多
Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lig...Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lighted FL lamps changes to the neutral vacuum that provides a superconductive vacuum for moving electrons at above room temperature. The complications of lighting mechanisms of HCFL lamps for more than 80 years have clearly solved with coexistence of disparate external and internal electric circuits for each half cycle. External electric circuit acts as two roles. One helps for formation of internal electric circuit in Ar gas space by electric field. Other picks up induced voltages from capacitor CFL. HCFL lamp only lights up with moving electrons in internal DC driving circuit. Electrons in HCFL lamp only move from cathode to anode, which respectively have negative and positive potentials against grand (V = 0), and which are formed with volumes of heated corona light (4G) at around W-filament metal electrodes with a help of heated BaO particles. The HCFL lamp that emits thermoelectrons is a false story. Here we have totally revised the fundamentals of the lighting mechanism of the established HCFL lamps for last 80 years.展开更多
The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density t...The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.展开更多
Experimental investigations and associated methods are provided to characterize the mechanical properties of a lithium-ion battery accounting for operating temperature variation and thermal effects. Material propertie...Experimental investigations and associated methods are provided to characterize the mechanical properties of a lithium-ion battery accounting for operating temperature variation and thermal effects. Material properties for LiFeP04 cathode and anode samples taken from an off-the-shelf battery are evaluated in new and fatigued (subjec- ted to charging and discharging cycles) conditions.展开更多
It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organi...It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multi- layer Cs2CO3/AI/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4callA and 12.1 1m/W at a practical brightness of lO00cd/m2 at low voltage of 4 V.展开更多
Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not conside...Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.展开更多
The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacr...The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.展开更多
Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especial...Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especially with limited anode excess required in a working full cell.In this contribution,a mixed diisopropyl ether-based(mixed-DIPE) electrolyte was proposed to effectively protect lithium metal anode in Li-S batteries with sulfurized polyacrylonitrile(SPAN) cathodes.The mixed-DIPE electrolyte improves the compatibility to lithium metal and suppresses the dissolution of lithium polysulfides,rendering significantly improved cycling stability.Concretely,Li | Cu half-cells with the mixed-DIPE electrolyte cycled stably for 120 cycles,which is nearly five times longer than that with routine carbonate-based electrolyte.Moreover,the mixedDIPE electrolyte contributed to a doubled life span of 156 cycles at 0.5 C in Li | SPAN full cells with ultrathin 50 μm Li metal anodes compared with the routine electrolyte.This contribution affords an effective electrolyte formula for Li metal anode protection and is expected to propel the practical applications of high-energy-density Li-S batteries.展开更多
We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical pro...We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical properties of the composite inert anodes,which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath.The kinetic parameters of oxygen evolution,corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 ℃,by measuring the anodic polarization curves,Tafel polarization curves and cyclic voltammetry curves.The results show that Pb-0.3wt% Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath,possess higher electrocatalytic activity of oxygen evolution,lower overpotential of oxygen evolution,better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution.The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution,and 245 mV lower than that of Pb-1% Ag alloy;the corrosion current of the composite inert anode is 0.95×10-4A which is distinctly lower than that of Pb-1%Ag alloy,showing the excellent corrosion resistance.展开更多
基金Joint Funds of the National Natural Science Foundation of China (U22A20140)University of Jinan Disciplinary Cross-Convergence Construction Project 2023 (XKJC-202309, XKJC-202307)+4 种基金Jinan City-School Integration Development Strategy Project (JNSX2023015)Independent Cultivation Program of Innovation Team of Ji’nan City (202333042)Youth Innovation Group Plan of Shandong Province (2022KJ095)Shenzhen Stable Support Plan Program for Higher Education Institutions Research Program (20220816131408001)Shenzhen Science and Technology Program (JCYJ20230807091802006)。
文摘Current aqueous battery electrolytes,including conve ntional hydrogel electrolytes,exhibit unsatisfactory water retention capabilities.The sustained water loss will lead to subsequent polarization and increased internal resistance,ultimately resulting in battery failure.Herein,a double network(DN) orga no hydrogel electrolyte based on dimethyl sulfoxide(DMSO)/H_(2)O binary solvent was proposed.Through directionally reconstructing hydrogen bonds and reducing active H_(2)O molecules,the water retention ability and cathode/anode interfaces were synergistic enhanced.As a result,the synthesized DN organohydrogel demonstrates exceptional water retention capabilities,retaining approximately 75% of its original weight even after the exposure to air for 20 days.The Zn MnO_(2) battery delivers an outstanding specific capacity of275 mA h g^(-1) at 1 C,impressive rate performance with 85 mA h g^(-1) at 30 C,and excellent cyclic stability(95% retention after 6000 cycles at 5 C).Zn‖Zn symmetric battery can cycle more than 5000 h at 1 mA cm^(-2) and 1 mA h cm^(-2) without short circuiting.This study will encourage the further development of functional organohydrogel electrolytes for advanced energy storage devices.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.
基金the National Natural Science Foundation of China(12102328)for supporting this work。
文摘Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.
文摘The radiofrequency(RF) inductive cathode has great prospects in space missions with long mission cycles, large speed increments, and rapid response requirements as the main electron source and neutralizer in Hall thrusters and ion thrusters. This paper proposes a comprehensive multi-physics RF inductive cathode model in which the RF electromagnetic field, electrostatic field for extracting electrons, flow field, plasma transport and electrochemical reaction process are all accounted for. Each physical field mentioned above can form a closed partial differential equation. The two-dimensional finite element code COMSOL is used to solve the multi-physics model. With this model, the formation process of the anode spot is exhibited and demonstrates the non-bipolar flow theory in practice. The simulation results demonstrate that the current jump in the RF inductive cathode is caused by the anode spot. Furthermore, the influences of preset discharge parameters such as RF power, bias voltage and actuating gas flow as well as structural parameters like the coil structure, discharge chamber size and ion collector area, emission hole size, distance between the anode target and the emission hole etc on the cathode performance are investigated, and some important optimal parameters are proposed.
基金This work was financially supported by the Australian Research Council(ARC)Discovery Projects(DP210103266 and DPI 701048343)the Griffith University Ph.D.Scholarships.
文摘Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems.
文摘To control the power hierarchy design of lithium-ion battery(LIB)builtup sets for electric vehicles(EVs),we offer intensive theoretical and experimental sets of choice anode/cathode architectonics that can be modulated in full-scale LIB built-up models.As primary structural tectonics,heterogeneous composite superstructures of full-cell-LIB(anode//cathode)electrodes were designed in closely packed flower agave rosettes TiO2@C(FRTO@C anode)and vertical-star-tower LiFePO4@C(VST@C cathode)building blocks to regulate the electron/ion movement in the three-dimensional axes and orientation pathways.The superpower hierarchy surfaces and multi-directional orientation components may create isosurface potential electrodes with mobile electron movements,in-to-out interplay electron dominances,and electron/charge cloud distributions.This study is the first to evaluate the hotkeys of choice anode/cathode architectonics to assemble different LIB-electrode platforms with high-mobility electron/ion flows and high-performance capacity functionalities.Density functional theory calculation revealed that the FRTO@C anode and VST-(i)@C cathode architectonics are a superior choice for the configuration of full-scale LIB built-up models.The integrated FRTO@C//VST-(i)@C full-scale LIB retains a huge discharge capacity(~94.2%),an average Coulombic efficiency of 99.85%after 2000 cycles at 1 C,and a high energy density of 127 Wh kg?1,thereby satisfying scale-up commercial EV requirements.
基金supported by the National Key Research and Development Program of China(2021YFB3800300,2018YFE0206900)the National Natural Science Foundation of China(52072138)the technical support from the Analytical and Testing Center of Huazhong University of Science and Technology(HUST)。
文摘Poly(ethylene oxide)(PEO)-based solid polymer electrolyte is always the most promising candidate for preparing thinner, lighter and safer lithium-ion batteries. However, the lithium dendrites growth of lithium anode and the high-voltage oxidation of cathode are easy to cause the PEO-based battery failure.The way to deal with the different challenges on both sides of the anode and cathode is pursued all the time. In this study, we reported a new strategy to construct the PVDF/PEO/PVDF three-layer structure for solid polymer electrolyte(marked as PVDF@PEO) using PVDF as the functional “skin”. The PVDF@PEO electrolyte can effectively prevent from the lithium dendrites, and shows a stable cycling life over1000 h in the Li/PVDF@PEO/Li cell. In addition, the PVDF@PEO electrolyte exhibits higher oxidation resistance and can be matched with high-voltage LiCoO_(2) cathode. The Li/PVDF@PEO/LiCoO_(2) cell delivered a specific capacity of about 150 m Ah g^(-1) over 150 cycles and maintained good cycling stability. Our research provides insights that the polymer electrolytes constructed with PVDF functional “skin” can simultaneously meet the challenges of both anode and cathode in solid-state lithium-ion batteries(SSLIBs).
基金funded by the Science Foundation Ireland (SFI)under the Principal Investigator Program under contract No.11PI-1148,16/IA/4629 and SFI 16/M-ERA/3419funding under the European Union’s Horizon 2020 Research and Innovation Program+7 种基金grant agreement No.814464 (Si-DRIVE project)IRCLA/2017/285 and SFI Research Centres AMBER,Ma REI and CONFIRM 12/RC/2302_P2,12/RC/2278_P2,and 16/RC/3918SFI for SIRG grant No.18/SIRG/5484support from the Sustainable Energy Authority of Ireland through the Research Development and Demonstration Funding Program (Grant No.19/RDD/548)Enterprise Ireland through the Innovation Partnership Program (Grant No.IP 20190910)support from the SFI Research Centre Ma REI (award reference No.12/RC/2302_P2)support from the SFI Industry RD&I Fellowship Program (21/IRDIF/9876)the EU Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Individual Fellowship Grant (843621)。
文摘Silicon nanowires(Si NWs)have been widely researched as the best alternative to graphite anodes for the next-generation of high-performance lithium-ion batteries(LIBs)owing to their high capacity and low discharge potential.However,growing binder-free Si NW anodes with adequate mass loading and stable capacity is severely limited by the low surface area of planar current collectors(CCs),and is particularly challenging to achieve on standard pure-Cu substrates due to the ubiquitous formation of Li+inactive silicide phases.Here,the growth of densely-interwoven In-seeded Si NWs is facilitated by a thin-film of copper-silicide(CS)network in situ grown on a Cu-foil,allowing for a thin active NW layer(<10μm thick)and high areal loading(≈1.04 mg/cm^(2))binder-free electrode architecture.The electrode exhibits an average Coulombic efficiency(CE)of>99.6%and stable performance for>900 cycles with≈88.7%capacity retention.More significantly,it delivers a volumetric capacity of≈1086.1 m A h/cm^(3)at 5C.The full-cell versus lithium manganese oxide(LMO)cathode delivers a capacity of≈1177.1 m A h/g at 1C with a stable rate capability.This electrode architecture represents significant advances toward the development of binder-free Si NW electrodes for LIB application.
基金Projects(11304243,11102164)supported by the National Natural Science Foundation of ChinaProject(2014JQ1039)supported by the Natural Science Foundation of Shannxi Province,China+3 种基金Project(12JK0966)supported by the Shaanxi Provincial Education Department,ChinaProject(2013QDJ037)supported by the Xi’an University of Science and Technology Dr Scientific Research Fund,ChinaProject(3102016ZY027)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(13GH014602)supported by the Program of New Staff and Research Area Project of NPU,China
文摘This work presents a method to solve the weak solubility of zinc chloride(ZnCl_2) in the ethanol by adding some reasonable water into an ethanol electrolyte containing ZnCl_2 and myristic acid(CH_3(CH_2)_(12)COOH).A rapid one-step electrodeposition process was developed to fabricate anodic(2.5 min) and cathodic(40 s) superhydrophobic surfaces of copper substrate(contact angle more than 150°) in an aqueous ethanol electrolyte.Morphology,composition,chemical structure and superhydrophobicity of these superhydrophobic surfaces were investigated by SEM,FTIR,XRD,and contact angle measurement,respectively.The results indicate that water ratio of the electrolyte can reduce the required deposition time,superhydrophobic surface needs over 30 min with anhydrous electrolyte,while it needs only 2.5 min with electrolyte including 10 mL water,and the maximum contact angle of anodic surface is 166° and that of the cathodic surface is 168°.Two copper electrode surfaces have different reactions in the process of electrodeposition time,and the anodic copper surface covers copper myristate(Cu[CH_3(CH_2)_(12)COO]_2) and cupric chloride(CuCl);while,zinc myristate(Zn[CH_3(CH_2)_(12)COO]_2) and pure zinc(Zn) appear on the cathodic surface.
文摘Due to concerns regarding the future availability,cost,and safety of lithium in Li-ion batteries(LIBs),researchers are exploring alternative chemistries such as Na-ion,Li-S,Li-air,and multivalent ion technologies.Multivalent ion technologies,which utilize divalent or trivalent ions,like Mg^(2+),Ca^(2+),and Al^(3+),show promise in achieving greater energy densities than LIBs due to their ability to deposit uniformly on anodes and intercalate into cathodes.While magnesium-ion batteries(MIBs) have been the primary area of research for multivalent ion batteries,the cost-effectiveness and abundance of calcium have sparked a growing interest in calcium-ion batteries(CIBs) in recent years.Compared to LIBs,CIBs have the potential to provide longer cycle life,enhanced safety,and increased energy densities.However,the development of CIBs comes with several challenges,such as finding suitable electrode and electrolyte materials that ensure the stability and safety of the battery.The primary hurdle in CIBs lies in the plating/stripping process.There is a significant hindrance preventing the occurrence of plating/stripping in CIBs,which lies in the formation of a passive layer resulting from the decomposition of the electrolyte.The objective of this article is to examine the advancements made in CIBs.Additionally,it aims to comprehensively assess the mechanisms and materials employed in various battery components,as well as the obstacles encountered in CIBs.This includes recent advancements in electrode materials,electrolytes,cell configurations,and the challenges and opportunities for enhancing the performance and commercial viability of CIBs.
基金supported by the Natural Science Foundation of China(52272188,U22A20227)the Natural Science Foundation of Beijing(2232025)+2 种基金the Natural Science Foundation of Chongqing(2022NSCQ-MSX2179)the Department of Science and Technology of Henan Province(Z20221343029)the Experimental Center of Advanced Materials in Beijing Institute of Technology。
文摘Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.
基金support from the German Research Foundation(DFG:LE 2249/15-1)the Sino-German Center for Research Promotion(GZ1579)support from the China Scholarship Council(No.202106370041)
文摘Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO_(2)cathode.Constructing suitable multifunctional electrodes for dendritefree anodes and kinetics-enhanced CO_(2)cathodes is considered one of the most important ways to advance the practical application of Na-CO_(2)batteries.Herein,RuO2 nanoparticles encapsulated in carbon paper(RuCP)are rationally designed and employed as both Na anode host and CO_(2)cathode in Na-CO_(2)batteries.The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+distribution and dendrite-free sodium structure at the anode,as well as strengthen discharge and charge kinetics at the cathode.The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces,delivering enhanced Coulombic efficiency of 99.5%and cycling stability near 1500 cycles.Meanwhile,Na-CO_(2)batteries with RuCP cathode demonstrated excellent cycling stability(>350 cycles).Significantly,implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO_(2)battery with long-duration cyclability,offering inspiration for extensive practical uses of Na-CO_(2)batteries.
文摘Vacuum space between Ar atoms in unlighted HCFL lamps is an electric insulator, because vacuum fills up with strong negative electric field from orbital electrons in 3p6 electron shell of Ar atoms. Vacuum space in lighted FL lamps changes to the neutral vacuum that provides a superconductive vacuum for moving electrons at above room temperature. The complications of lighting mechanisms of HCFL lamps for more than 80 years have clearly solved with coexistence of disparate external and internal electric circuits for each half cycle. External electric circuit acts as two roles. One helps for formation of internal electric circuit in Ar gas space by electric field. Other picks up induced voltages from capacitor CFL. HCFL lamp only lights up with moving electrons in internal DC driving circuit. Electrons in HCFL lamp only move from cathode to anode, which respectively have negative and positive potentials against grand (V = 0), and which are formed with volumes of heated corona light (4G) at around W-filament metal electrodes with a help of heated BaO particles. The HCFL lamp that emits thermoelectrons is a false story. Here we have totally revised the fundamentals of the lighting mechanism of the established HCFL lamps for last 80 years.
基金the support by the Key-Area Research and Development Program of Guangdong Province(No.2020B090919003)the National Nature Science Foundation of China(Nos.51872157 and 52072208)+4 种基金the Shenzhen Technical Plan Project(Nos.JCYJ20170817161753629 and JCYJ20170412170911187)the Special Fund Project for Strategic Emerging Industry Development of Shenzhen(No.20170428145209110)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(No.2017BT01N111)the Support Plan for Shenzhen Manufacturing Innovation Center(No.20200627215553988)the Key projects for core technology research of Dongguan(No.2019622119003)。
文摘The energy density of commercial lithium(Li)ion batteries with graphite anode is reaching the limit.It is believed that directly utilizing Li metal as anode without a host could enhance the battery’s energy density to the maximum extent.However,the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community.Herein,a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode.To be specific,a scalable template-removal method is developed to fabricate the porous graphite layer(PGL),which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways.A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li.As a result,when the excess plating Li reaches 30%,the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 m Ah cm^(-2) in traditional carbonate electrolyte.Meanwhile,an air-stable recrystallized lithium oxalate with high specific capacity(514.3 m Ah g^(-1))and moderate operating potential(4.7-5.0 V)is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles.Based on the prelithiated cathode and initial Li-free symbiotic anode,under a practical-level3 m Ah capacity,the assembled hybrid Li-ion/metal full cell with a P/N ratio(capacity ratio of Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2) to graphite)of 1.3exhibits significantly improved capacity retention after 300 cycles,indicating its great potential for high-energy-density Li batteries.
基金the National Science Foundation and Advanced Technologies(NFSAT),the grant No.TFP-12-06supported by Clarkson University Mechanical and Aeronautical Engineering Department,and Clarkson University Center for Advanced Material Processing
文摘Experimental investigations and associated methods are provided to characterize the mechanical properties of a lithium-ion battery accounting for operating temperature variation and thermal effects. Material properties for LiFeP04 cathode and anode samples taken from an off-the-shelf battery are evaluated in new and fatigued (subjec- ted to charging and discharging cycles) conditions.
基金Supported by the National Basic Research Program of China under Grant No 2010CB327701the National Natural Science Foundation of China under Grant No 61275033
文摘It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multi- layer Cs2CO3/AI/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4callA and 12.1 1m/W at a practical brightness of lO00cd/m2 at low voltage of 4 V.
基金Projects(61773405,61725306,61533020)supported by the National Natural Science Foundation of ChinaProject(2018zzts583)supported by the Fundamental Research Funds for the Central Universities,China
文摘Classification of multi-dimension time series(MTS) plays an important role in knowledge discovery of time series. Many methods for MTS classification have been presented. However, most of these methods did not consider the kind of MTS whose discriminative subsequence was not restricted to one dimension and dynamic. In order to solve the above problem, a method to extract new features with extended shapelet transformation is proposed in this study. First, key features is extracted to replace k shapelets to calculate distance, which are extracted from candidate shapelets with one class for all dimensions. Second, feature of similarity numbers as a new feature is proposed to enhance the reliability of classification. Third, because of the time-consuming searching and clustering of shapelets, distance matrix is used to reduce the computing complexity. Experiments are carried out on public dataset and the results illustrate the effectiveness of the proposed method. Moreover, anode current signals(ACS) in the aluminum reduction cell are the aforementioned MTS, and the proposed method is successfully applied to the classification of ACS.
文摘The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.
基金supported by National Key Research and Development Program(2016YFA0202500 and 2016YFA0200102)National Natural Science Foundation of China(21776019,21825501,and U1801257)the Tsinghua University Initiative Scientific Research Program
文摘Lithium-sulfur(Li-S) battery is considered as a promising energy storage system to realize high energy density.Nevertheless,unstable lithium metal anode emerges as the bottleneck toward practical applications,especially with limited anode excess required in a working full cell.In this contribution,a mixed diisopropyl ether-based(mixed-DIPE) electrolyte was proposed to effectively protect lithium metal anode in Li-S batteries with sulfurized polyacrylonitrile(SPAN) cathodes.The mixed-DIPE electrolyte improves the compatibility to lithium metal and suppresses the dissolution of lithium polysulfides,rendering significantly improved cycling stability.Concretely,Li | Cu half-cells with the mixed-DIPE electrolyte cycled stably for 120 cycles,which is nearly five times longer than that with routine carbonate-based electrolyte.Moreover,the mixedDIPE electrolyte contributed to a doubled life span of 156 cycles at 0.5 C in Li | SPAN full cells with ultrathin 50 μm Li metal anodes compared with the routine electrolyte.This contribution affords an effective electrolyte formula for Li metal anode protection and is expected to propel the practical applications of high-energy-density Li-S batteries.
基金Funded by the Specialized Research Fund for the Doctoral Program of the Ministry of Education of China(No.20125314110011)the Key Project of Yunnan Province Applied Basic Research Plan of China(No.2014FA024)the National Natural Science Foundation of China(No.51564029)
文摘We prepared Pb-0.3wt%Ag/Pb-WC(WC stands for tungsten carbide,the same below) composite inert anodes by double-pulse electrodeposition on the surface of Pb-0.3wt%Ag substrates,and investigated the electrochemical properties of the composite inert anodes,which were obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and WC concentrations from 0 g/L to 40 g/L in bath.The kinetic parameters of oxygen evolution,corrosion potential and corrosion current of the composite inert anodes were obtained in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 ℃,by measuring the anodic polarization curves,Tafel polarization curves and cyclic voltammetry curves.The results show that Pb-0.3wt% Ag/Pb-WC composite inert anodes obtained under forward pulse average current density of 3 A/dm2 and WC concentration of 30 g/L in an original acid plating bath,possess higher electrocatalytic activity of oxygen evolution,lower overpotential of oxygen evolution,better reversibility of electrode reaction and corrosion resistance in [ZnSO4+H2SO4] solution.The overpotential of oxygen evolution of the composite inert anode is 0.926 V under 500 A/m2 in [ZnSO4+H2SO4] solution,and 245 mV lower than that of Pb-1% Ag alloy;the corrosion current of the composite inert anode is 0.95×10-4A which is distinctly lower than that of Pb-1%Ag alloy,showing the excellent corrosion resistance.