期刊文献+
共找到279,122篇文章
< 1 2 250 >
每页显示 20 50 100
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
1
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
2
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Analysis and Power Quality Improvement in Hybrid Distributed Generation System with Utilization of Unified Power Quality Conditioner
3
作者 Noor Zanib Munira Batool +4 位作者 Saleem Riaz Farkhanda Afzal Sufian Munawar Ibtisam Daqqa Najma Saleem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1105-1136,共32页
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u... This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink. 展开更多
关键词 PHOTOVOLTAIC wind turbine unified power quality conditioner power flow distributed generation system
下载PDF
Control of Distributed Generation Using Non-Sinusoidal Pulse Width Modulation
4
作者 Mehrdad Ahmadi Kamarposhti Phatiphat Thounthong +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2023年第2期4149-4164,共16页
The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where... The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where a control method needing no current sensors or compensator elements is applied to the distribute generation system in the islanded mode.This control method has two main loops in each phase.The first loop controls the voltage control loops that adjust the three-phase point of common coupling,the amplitude of the non-sinusoidal reference waveform and the near-state pulse width modulation(NSPWM)method.The next loop compensates the harmonic compensator loop that calculates the voltage harmonics of the point of common coupling in each phase,and injects them to compensate the non-sinusoidal reference waveforms of each phase.The simulation results in MATLAB/SIMULINK show that this method can generate balanced threephase sinusoidal voltage with an acceptable total harmonic distortion(THD)at the joint connection point. 展开更多
关键词 Islanded mode distributed generation resource the point of common coupling voltage total harmonic distortion
下载PDF
Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation
5
作者 Saurabh Awasthi Gagan Singh Nafees Ahamad 《Energy Engineering》 EI 2023年第4期811-829,共19页
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab... A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults. 展开更多
关键词 Distribution network distributed generation power system modeling fault identification neural network renewable energy systems
下载PDF
Optimal Placement and Sizing of Distributed Generations for Power Losses Minimization Using PSO-Based Deep Learning Techniques
6
作者 Bello-Pierre Ngoussandou Nicodem Nisso +1 位作者 Dieudonné Kaoga Kidmo   Kitmo 《Smart Grid and Renewable Energy》 2023年第9期169-181,共13页
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar... The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method. 展开更多
关键词 distributed generations Deep Learning Techniques Improved Particle Swarm Optimization Power Losses Power Losses Minimization Optimal Placement
下载PDF
Coordinated Cyber-Physical equipment planning for distributed generation based on chance constrained 被引量:1
7
作者 Hanshen Li Wenxia Liu 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期645-653,共9页
With development of distributed generation(DG),configuration of optimization equipment is crucial for absorbing excess electricity and stabilizing fluctuations.This study proposes a two-layer configuration strategy co... With development of distributed generation(DG),configuration of optimization equipment is crucial for absorbing excess electricity and stabilizing fluctuations.This study proposes a two-layer configuration strategy coordinates active cyber control and the physical energy storage(ES)system.First,an upper economic model is developed.Based on chance-constrained programming,an operation model accounts for inherent uncertainty are then developed.Under constraint of voltage risk level,a lower operation model is developed.Finally,a solution based on differential evolution is provided.An IEEE 33 bus system simulation was used to validate efficacy of model.The effects of risk level,equipment price,and chance-constrained probability were analyzed,providing a foundation for power consumption and expansion of cyber-physical systems. 展开更多
关键词 Distribution cyber-physical system Active control Energy storage distributed generation Chance-constrained programming
下载PDF
Optimal Placement and Sizing of Distributed Generation Using Metaheuristic Algorithm
8
作者 D.Nageswari N.Kalaiarasi G.Geethamahalakshmi 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期493-509,共17页
Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems.But such issues can be resolved through effective usage of networking reconfiguration that has a combinat... Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems.But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation(DG)units from distribution networks.In this point of view,optimal placement and sizing of DGs are effective ways to boost the performance of power systems.The optimum allocation of DGs resolves various problems namely,power loss,voltage profile improvement,enhanced reliability,system stability,and performance.Several research works have been conducted to address the distribution system problems in terms of power loss,energy loss,voltage profile,and voltage stability depending upon optimal DG distribution.With this motivation,the current study designs a Chaotic Artificial Flora Optimization based on Optimal Placement and Sizing of DGs(CAFO-OPSDG)to enhance the voltage profiles and mitigate the power loss.Besides,the CAFO algorithm is derived from the incorporation of chaos theory concept into conventional artificial flora optimization AFO algorithm with an aim to enhance the global optimization abilities.The fitness function of CAFO-OPSDG algorithm involves voltage regulation,power loss minimization,and penalty cost.To consider the actual power system scenario,the penalty factor acts as an important element not only to minimize the total power loss but to increase the voltage profiles as well.The experimental validation of the CAFO-OPSDG algorithm was conducted against IEEE 33 Bus system and IEEE 69 Bus system.The outcomes were examined under various test scenarios.The results of the experiment established that the presented CAFO-OPSDG model is effective in terms of reducing the power loss and voltage deviation and boost-up the voltage profile for the specified system. 展开更多
关键词 Voltage profile enhancement loss minimization distributed generation optimal dg sizing optimal DG placement metaheuristics
下载PDF
Optimal Operation of Electric Vehicles and Distributed Generation Resources in Smart Grid Considering Load Management
9
作者 Zheng Wang Shangke Liu +2 位作者 Yanli Xiao Ye Wan Bin Bai 《Energy Engineering》 EI 2022年第6期2655-2679,共25页
Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protect... Technology advancement and the global tendency to use renewable energy in distributed generation units in the distribution network have been proposed as sources of energy supply.Despite the complexity of their protection,as well as the operation of distributed generation resources in the distribution network,factors such as improving reliability,increasing production capacity of the distribution network,stabilizing the voltage of the distribution network,reducing peak clipping losses,as well as economic and environmental considerations,have expanded the influence of distributed generation(DG)resources in the distribution network.The location of DG sources and their capacity are the key factors in the effectiveness of distributed generation in the voltage stability of distribution systems.Nowadays,along with the scattered production sources of electric vehicles with the ability to connect to the network,due to having an energy storage system,they are known as valuable resources that can provide various services to the power system.These vehicles can empower the grid or be used as a storage supply source when parked and connected to the grid.This paper introduces and studies a two-stage planning framework for the concurrent management of many electric vehicles and distributed generation resources with private ownership.In the first stage,the aim is to increase the profit of electric vehicles and distributed generation sources;finally,the purpose is to reduce operating costs.The proposed scheduling framework is tested on a distribution network connected to bus 5 of the RBTS sample network.Besides distributed generation sources and electric vehicles,we integrate time-consistent load management into the system.Due to distributed generation sources such as photovoltaic systems and wind turbines and the studied design in the modeling,we use the Taguchi TOAT algorithm to generate and reduce the scenario to ensure the uncertainty in renewable energy.MATLAB software is used to solve the problem and select the optimal answer. 展开更多
关键词 Electric vehicle distributed generation sources COORDINATOR UNCERTAINTY taguchi algorithm harmony search algorithm load management
下载PDF
Optimal Intelligent Reconfiguration of Distribution Network in the Presence of Distributed Generation and Storage System
10
作者 Gang Lei Chunxiang Xu 《Energy Engineering》 EI 2022年第5期2005-2029,共25页
In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr... In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared. 展开更多
关键词 RECONFIGURATION distributed generation resources(DGRs) fuzzy modeling developed particle swarm optimization(PSO)algorithm
下载PDF
Distributed Generation Islanding Effect on Distribution Networks and End User Loads Using the Master-Slave Islanding Method
11
作者 Lambros Ekonomou George P. Fotis +1 位作者 Vasiliki Vita Valeri Mladenov 《Journal of Power and Energy Engineering》 2016年第10期1-24,共24页
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d... This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages. 展开更多
关键词 distributed generation Distribution Networks ISLANDING Master-Slave Islanding Method Neplan Simulation Tool
下载PDF
Allocation of Hybrid Distributed Generations and Energy Management in Radial Electrical Systems
12
作者 Ngoussandou Bello Pierre Nicodem Nisso +2 位作者 Benjamin Diboma Jean De Dieu Nguimfack Ndongmo Sadam Alphonse 《Smart Grid and Renewable Energy》 CAS 2022年第11期249-267,共19页
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is... This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system. 展开更多
关键词 Power Losses Hybrid System distributed generations Cost of Energy
下载PDF
Islanding Detection Method for Multi-Inverter Distributed Generation 被引量:3
13
作者 Alben CARDENAS Kodjo AGBOSSOU Mamadou Lamine DOUMBIA 《Journal of Electromagnetic Analysis and Applications》 2009年第3期170-180,共11页
Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under mult... Islanding detection is an essential function for safety and reliability in grid-connected distributed generation (DG) systems. Several methods for islanding detection are proposed, but most of them may fail under multi-source configurations, or they may produce important power quality degradation which gets worse with increasing DG penetration. This paper presents an active islanding detection algorithm for Voltage Source Inverter (VSI) based multi-source DG systems. The proposed method is based on the Voltage Positive Feedback (VPF) theory to generate a limited active power perturbation. Theoretical analyses were performed and simulations by MATLAB /Simulink /SimPowerSystems were used to evaluate the algorithm’s performance and its advantages concerning the time response and the effects on power quality, which turned out to be negligible. The algorithm performance was tested under critical conditions: load with unity power factor, load with high quality factor, and load matching DER’s powers. 展开更多
关键词 distributed generation (DG) Interconnected POWER Systems ISLANDING Detection POWER generation Voltage POSITIVE Feedback.
下载PDF
Analysis of Distributed Generation Systems, Smart Grid Technologies and Future Motivators Influencing Change in the Electricity Sector 被引量:1
14
作者 Nur Asyik Hidayatullah Blagojce Stojcevski Akhtar Kalam 《Smart Grid and Renewable Energy》 2011年第3期216-229,共14页
The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices... The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices, energy security and energy efficiency are converging to drive fundamental change in the way energy is produced, delivered and utilized. The electricity system of the future must produce and distribute electricity that is reliable, affordable and clean. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. This paper explores smart grid technologies, distributed generation systems, R & D efforts across Europe and the United States, and technical, economical and regulatory barriers facing modern utilities. 展开更多
关键词 CLIMATE CHANGE distributed generation ELECTRICITY SECTOR Smart GRID
下载PDF
IoT Based Approach in a Power System Network for Optimizing Distributed Generation Parameters
15
作者 P.Shanmugapriya J.Baskaran +1 位作者 C.Nayanatara D.P.Kothari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期541-558,共18页
The objective of this paper is to provide a robust Virtual Power Plant(VPP)network collaborated with Internet of Things(IoT)which uses a conceptual model to integrate each device in the grid.Based on the functionality... The objective of this paper is to provide a robust Virtual Power Plant(VPP)network collaborated with Internet of Things(IoT)which uses a conceptual model to integrate each device in the grid.Based on the functionality all the devices which are purely distributed within the grid are networked initially from residential units to substations and up to service data and demand centres.To ensure the trapping of the available power and the efficient transfer of Distributed Generation(DG)power to the grid Distribution Active Control(DAC)strategy is used.Synchronized optimization of DG parameter which includes DG size,location and type are adopted using Dispatch strategy.The case studies are optimized by rescheduling the generation and with load curtailment.Maximized Customer Benefit(MCB)is taken as an objective function and a straight forward solution is given by heuristic search techniques.This method was vindicated in a practical Indian Utility system.This control proposes better performances,ensures reliability and efficiency even under parameter variations along with disturbances which is justified using IEEE 118 bus system and real time Indian utility 63 bus system.Results reveal that the proposed technique proves advantages of low computational intricacy. 展开更多
关键词 CUSTOMER BENEFIT distributed generation internet of THINGS VIRTUAL power PLANT distribution active control
下载PDF
Impacts of Electrical Line Losses Comprising Mul-ti-Distributed Generation in Distribution System
16
作者 Surakit Thongsuk Atthapol Ngaopitakkul 《Energy and Power Engineering》 2013年第4期1037-1042,共6页
This paper proposes to study the impacts of electrical line losses due to the connection of distributed generators (DG) to 22kV distribution system of Provincial Electricity Authority (PEA). Data of geographic informa... This paper proposes to study the impacts of electrical line losses due to the connection of distributed generators (DG) to 22kV distribution system of Provincial Electricity Authority (PEA). Data of geographic information systems (GIS) including the distance of distribution line and location of load being key parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze power loss of the distribution system. In addition, the capacity and location of DG installed into the distribution system is considered. The results are shown that, when DG is installed close to the substation, the electrical line losses are reduced. However, if DG capacity becomes larger and the distance between DG and load is longer, the electrical line losses tend to increase. The results of this paper can be used to create the suitability and fairness of the fee for both DG and utility. 展开更多
关键词 ELECTRICAL LOSS distributed generation Distribution System RENEWABLE Energy
下载PDF
Optimal Placement of Distributed Generation for Reliability Benefit in Distribution Systems
17
作者 N. Rugthaicharoencheep A. Chalangsut 《Energy and Power Engineering》 2013年第4期683-688,共6页
A <st1:data language="0" startpos="3" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been... A <st1:data language="0" startpos="3" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">distributed generator is <st1:data language="0" startpos="28" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">a small-scaled <st1:data language="0" startpos="42" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">active <st1:data language="0" startpos="49" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">generating <st1:data language="0" startpos="60" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">unit <st1:data language="0" startpos="65" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in the system power loss if their locations and sizes are appropriately determined. For this reason, the main objective of this paper is to develop mathematical models and a technique based on tabu search for the optimal placement and sizing of DGs in a distribution system. Numerical results from tests on 12-, 33- and 13-bus distribution systems with different load distributions show that the system power loss with DGs can be significantly reduced when compared with that without the DGs. " w:st="on">located <st1:data language="0" startpos="73" context="A distributed generator is a small-scale active generating unit located on or near the site where it is to be used. Several benefits have been realized by installing DGs in the distribution network. Among them is a reduction in 展开更多
关键词 distributed generation RELIABILITY Tabu SEARCH DISTRIBUTION System
下载PDF
A Reliability Impact and Assessment of Distributed Generation Integration to Distribution System
18
作者 Atthapol Ngaopitakkul Chaichan Pothisarn +3 位作者 Sulee Bunjongjit Boonlert Suechoey Chaiyo Thammart Auttarat Nawikavatan 《Energy and Power Engineering》 2013年第4期1043-1047,共5页
The main purpose of this paper is to study the reliability due to the employment of distributed generations (DG) integrated to distribution system. The system under this study is from Provincial Electricity Authority ... The main purpose of this paper is to study the reliability due to the employment of distributed generations (DG) integrated to distribution system. The system under this study is from Provincial Electricity Authority (PEA) that is a part of Thailand’s distribution system. Data of geographic information systems (GIS) including the distance of distribution line and location of load that are parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze the impact of reliability with the installing DG into the distribution system. The system average interruption frequency index (SAIFI), the system average interruption duration index (SAIDI) and interruption cost are assessed as index of reliability by comparing the SAIFI, SAIDI, and interruption cost between the base case (no DG) and the case that DG connected to the distribution system. The results can be summarized by focusing on location of DG, the capacity of DG, the size of load, and the distance of load which are factors able to impact to SAIFI, SAIDI, and interruption cost. 展开更多
关键词 RELIABILITY distributed generation INTERRUPTION COST Distribution System SAIFI SAIDI
下载PDF
A Comprehensive Review of Protection Schemes for Distributed Generation
19
作者 Umair Shahzad Sohrab Asgarpoor 《Energy and Power Engineering》 2017年第8期430-463,共34页
Due to the increasing demand of energy and the need for nonconventional energy sources, distributed generation (DG) has come into play. The trend of unidirectional power flow has been gradually shifting. With new tech... Due to the increasing demand of energy and the need for nonconventional energy sources, distributed generation (DG) has come into play. The trend of unidirectional power flow has been gradually shifting. With new technology comes new challenges, the introduction of DG into the conventional power system brings various challenges;one of the major challenges is system protection under DG sources. These sources pose a significant challenge due to bidirectional flows from DGs as well as lower fault current contribution from inverter interfaced DGs. This paper reviews existing protection schemes that have been suggested for active distribution networks. Most of these protection strategies apply only to smaller distribution systems implying that they may need to be extended to larger systems with a much higher penetration of distributed generation. In the end, a potential protection scheme has also been recommended as a future work. 展开更多
关键词 distributed generation (DG) Energy Protection SCHEMES ACTIVE Distribution Networks
下载PDF
Protection of Distributed Generation: Challenges and Solutions
20
作者 Umair Shahzad Salman Kahrobaee Sohrab Asgarpoor 《Energy and Power Engineering》 2017年第10期614-653,共40页
Distributed generation (DG) is the future of energy. This technology allows the bidirectional flow of power within an electrical network. Researchers are faced with many challenges to the accurate implementation of pr... Distributed generation (DG) is the future of energy. This technology allows the bidirectional flow of power within an electrical network. Researchers are faced with many challenges to the accurate implementation of protection schemes for DG-connected distribution network. The schemes designed must satisfy the performance requirements of selectivity, reliability, and sensitivity. Most researchers opine that conventional protection schemes based on over current detection are insufficient to completely and accurately protect a DG-connected distributed power system. There are many challenges?that?need to be tackled before embarking upon the journey to successfully implement these schemes. This paper summarizes the major challenges which one can encounter while designing protection schemes for DG-connected distribution networks. Some possible solutions from the literature are also mentioned. Moreover, a suggested solution for protecting future active distribution networks is provided. It is expected that this paper will act as a benchmark for future researchers in this field to tackle the challenges related to the protection of active distribution networks. 展开更多
关键词 distributed generation (DG) Energy SELECTIVITY Sensitivity RELIABILITY PROTECTION SCHEMES ACTIVE Distribution Networks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部