期刊文献+
共找到269篇文章
< 1 2 14 >
每页显示 20 50 100
Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury 被引量:5
1
作者 Anjie Lu Zufa Huang +6 位作者 Chaoyue Zhang Xianfang Zhang Jiuhong Zhao Haiying Zhang Quanpeng Zhang Song Wu Xinan Yi 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1031-1040,共10页
This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiife... This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identiifed whose expression was signiifcantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3′-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization veriifed that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a com-bination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neu-rons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that mi-croRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection. 展开更多
关键词 nerve regeneration peripheral nerve injury sciatic nerve injury Slit-Robo GTPase-activating protein 3 microRNA-214 dorsal root ganglia gene expression MICROARRAY BIOINFORMATICS NSFC grant neural regeneration
下载PDF
Biological characteristics of dynamic expression of nerve regeneration related growth factors in dorsal root ganglia after peripheral nerve injury 被引量:5
2
作者 Yin-Ying Shen Xiao-Kun Gu +3 位作者 Rui-Rui Zhang Tian-Mei Qian Shi-Ying Li Sheng Yi 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1502-1509,共8页
The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regen... The regenerative capacity of peripheral nerves is limited after nerve injury.A number of growth factors modulate many cellular behaviors,such as proliferation and migration,and may contribute to nerve repair and regeneration.Our previous study observed the dynamic changes of genes in L4–6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing.Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3,9 hours,1,4,or 7 days after nerve crush,compared with the 0 hour control.Thirty-six rat models of sciatic nerve crush injury were prepared as described previously.Then,they were divided into six groups to measure the expression changes of representative genes at 0,3,9 hours,1,4 or 7 days post crush.Our current study measured the expression levels of representative upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin genes,and explored critical signaling pathways and biological process through bioinformatic analysis.Our data revealed that many of these dysregulated upstream growth factors,including nerve growth factor,brain-derived neurotrophic factor,fibroblast growth factor 2 and amphiregulin,participated in tissue remodeling and axon growth-related biological processes Therefore,the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury.Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves.All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals,China(approval No.20170302-017)on March 2,2017. 展开更多
关键词 axon growth bioinformatic analysis dorsal root ganglia growth factors Ingenuity Pathway Analysis nerve regeneration peripheral nerve injury rat sciatic nerve crush injury transcriptome sequencing upstream regulators
下载PDF
Transcription factor networks involved in cell death in the dorsal root ganglia following peripheral nerve injury 被引量:2
3
作者 Jing Qin Jian-Cheng Wu +3 位作者 Qi-Hui Wang Song-Lin Zhou Su-Su Mao Chun Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1622-1627,共6页
The peripheral nervous system has the potential to regenerate after nerve injury owing to the intrinsic regrowth ability of neurons and the permissive microenvironment.The regenerative process involves numerous gene e... The peripheral nervous system has the potential to regenerate after nerve injury owing to the intrinsic regrowth ability of neurons and the permissive microenvironment.The regenerative process involves numerous gene expression changes,in which transcription factors play a critical role.Previously,we profiled dysregulated genes in dorsal root ganglion neurons at different time points(0,3 and 9 hours,and 1,4 and 7 days) after sciatic nerve injury in rats by RNA sequencing.In the present study,we investigated differentially expressed transcription factors following nerve injury,and we identified enriched molecular and cellular functions of these transcription factors by Ingenuity Pathway Analysis.This analysis revealed the dynamic changes in the expression of transcription factors involved in cell death at different time points following sciatic nerve injury.In addition,we constructed regulatory networks of the differentially expressed transcription factors in cell death and identified some key transcription factors(such as STAT1,JUN,MYC and IRF7).We confirmed the changes in expression of some key transcription factors(STAT1 and IRF7) by quantitative reverse transcription-polymerase chain reaction.Collectively,our analyses provide a global overview of transcription factor changes in dorsal root ganglia after sciatic nerve injury and offer insight into the regulatory transcription factor networks involved in cell death. 展开更多
关键词 nerve regeneration cell death transcription factors dorsal root ganglia neurons peripheral nerve injury sciatic nerve ingenuitypathway analysis Cytoscape bioinformatics analysis STAT1 IRF7 neural regeneration
下载PDF
Na_v1.7 protein and mRNA expression in the dorsal root ganglia of rats with chronic neuropathic pain 被引量:1
4
作者 Chao Liu Jing Cao +1 位作者 Xiuhua Ren Weidong Zang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第20期1540-1544,共5页
Neuropathic pain was produced by chronic constriction injury of the sciatic nerve in rats. Behaviora tests showed that the thresholds for thermal and mechanical hyperalgesia were significantly reduced in neuropathic p... Neuropathic pain was produced by chronic constriction injury of the sciatic nerve in rats. Behaviora tests showed that the thresholds for thermal and mechanical hyperalgesia were significantly reduced in neuropathic pain rats 3 28 days following model induction. The results of immunohistochemistry, western blot assays and reverse transcription-PCR showed that Nay1.7 protein and mRNA expression was significantly increased in the injured dorsal root ganglia. These findings indicated that Nay1.7 might play an important role in the model of chronic neuropathic pain 展开更多
关键词 Navl.7 neuropathic pain dorsal root ganglia sodium channel SENSITIZATION HYPERALGESIA REGENERATION neural regeneration
下载PDF
Prokaryotic expression of recombinant human p75NTR-Fc fusion protein and its effect on the neurite outgrowth of dorsal root ganglia neuron 被引量:1
5
作者 Zhu Feng Wang Yongtang +2 位作者 Lu Xiumin Zeng Lin Wu Yamin 《Journal of Medical Colleges of PLA(China)》 CAS 2009年第1期1-9,共9页
Objective: To clone, express, and identify the extracellular domain gene of human p75 neurotrophin receptor with IgG-Fe (hp75NTR-Fc) in prokaryotic expression system, and investigate the effect of the recombinant p... Objective: To clone, express, and identify the extracellular domain gene of human p75 neurotrophin receptor with IgG-Fe (hp75NTR-Fc) in prokaryotic expression system, and investigate the effect of the recombinant protein on dorsal root ganglia (DRG) neuron neurites. Methods: The hp75NTR-Fc coding sequence was amplified from pcDNA-hp75NTR-Fc by polymerase chain reaction (PCR) and subcloned into vector pET30a (+), in which hp75NTR-Fc expression was controlled under the T7 promoter. The recombinant vectors were amplified in E. coli DH5α and identified by PCR, enzyme digestion and sequencing, and then transformed into E. coli BL21 (DE3). The expression product was analyzed with SDS-PAGE and Western blot. Then after the recombinant protein purified with Protein A affinity chromatograph, and renaturated with dialysis, respectively, the effect of the recombinant protein on DRG neuron neuritis was further investigated. Results: The results of PCR, enzyme digestion, and sequencing demonstrated the success of inserting the hp75NTR-Fc fragment into vector pET30a (+). SDS-PAGE and Western blot showed a positive protein band with molecular weight about 50 kD in the expression product, which is accordant with the interest protein, and this band could be specifically recognized by rabbit anti-NGFRp75 antibody. The purified infusion protein following dialysis could promote neurite outgrowth of DRG neurons cultured with myelin-associated glycoprotein (MAG). Conclusion: The hp75NTR-Fc coding sequence was subcloned into the expression vector pET30a (+) correctly and expressed successfully in the prokaryotie expression system. The infusion protein could promote neurite outgrowth of DRG neurons cultured with MAG. 展开更多
关键词 P75NTR Vector construction Prokaryotic expression dorsal root ganglia neuron Neurite outgrowth
原文传递
Pain-related mediators underlie incision-induced mechanical nociception in the dorsal root ganglia
6
作者 Xiuhong Yuan Xiangyan Liu +1 位作者 Qiuping Tang Yunlong Deng 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第35期3325-3333,共9页
Approximately 50-70% of patients experience incision-induced mechanical nociception after sur- gery. However, the mechanism underlying incision-induced mechanical nociception is still unclear. Interleukin-10 and brain... Approximately 50-70% of patients experience incision-induced mechanical nociception after sur- gery. However, the mechanism underlying incision-induced mechanical nociception is still unclear. Interleukin-10 and brain-derived neurotrophic factor are important pain mediators, but whether in- terleukin-10 and brain-derived neurotrophic factor are involved in incision-induced mechanical no- ciception remains uncertain. In this study, forty rats were divided randomly into the incision surgery (n = 32) and sham surgery (n = 8) groups. Plantar incision on the central part of left hind paw was performed under anesthesia in rats from the surgery group. Rats in the sham surgery group re- ceived anesthesia, but not an incision. Yon Frey test results showed that, compared with the sham surgery group, incision surgery decreased the withdrawal threshold of rats at 0.5, 3, 6 and 24 hours after incision. Immunofluorescence staining in the dorsal root ganglia of the spinal cord (L3-5) showed that interleukin-10 and brain-derived neurotrophic factor were expressed mainly on small- and medium-sized neurons (diameter 〈 20 pm and 20-40 pm) and satellite cells in the dorsal root ganglia of the spinal cord (L3-5) in the sham surgery group. By contrast, in the surgery group, high expression of interleukin-10 and brain-derived neurotrophic factor appeared in large-sized neurons (diameter 〉 40 pm) at 6 and 24 hours after incision surgery, which corresponded to the decreased mechanical withdrawal threshold of rats in the surgery group. These experimental findings suggest that expression pattern shift of interleukin-10 and brain-derived neurotrophic factor induced by inci- sion surgery in dorsal root ganglia of rats was closely involved in lowering the threshold to me- chanical stimulus in the hind paw following incision surgery. Pain-related mediators induced by in- cision surgery in dorsal root ganglia of rats possibly underlie mechanical nociception in ipsilateral hind paws. 展开更多
关键词 neural regeneration peripheral nerve injury interleukin-lO brain-derived neurotrophic factor rats mechanical nociception dorsal root ganglia INCISION pain-related mediators von Frey test hind paws grants-supported paper neuroregeneration
下载PDF
Proteome profiling of spinal cord and dorsal root ganglia in rats with trinitrobenzene sulfonic acid-induced colitis
7
作者 Xiao-Jun Zhang Feung Ping Leung +5 位作者 Wendy WL Hsiao Shun Tan Shao Li Hong-Xi Xu Joseph JY Sung Zhao-Xiang Bian 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第23期2914-2928,共15页
AIM: To investigate proteomic changes in spinal cord and dorsal root ganglia (DRG) of rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: The colonic myeloperoxidase (MPO) activity and tumor necro... AIM: To investigate proteomic changes in spinal cord and dorsal root ganglia (DRG) of rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. METHODS: The colonic myeloperoxidase (MPO) activity and tumor necrosis factor-(TNF- ) level were determined. A two-dimensional electrophoresis (2-DE)-based proteomic technique was used to profile the global protein expression changes in the DRG and spinal cord of the rats with acute colitis induced by intracolonic injection of TNBS. RESULTS: TNBS group showed significantly elevated colonic MPO activity and increased TNF-level. The proteins derived from lumbosacral enlargement of the spinal cord and DRG were resolved by 2-DE; and 26 and 19 proteins that displayed significantly different expression levels in the DRG and spinal cord were identified respectively. Altered proteins were found to be involved in a number of biological functions, such as inflammation/immunity, cell signaling, redox regulation, sulfate transport and cellular metabolism. The over-expression of the protein similar to potassium channel tetramerisation domain containing protein 12 (Kctd 12) and low expression of proteasome subunit type-1 (psma) were validated by Western blotting analysis. CONCLUSION: TNBS-induced colitis has a profound impact on protein profiling in the nervous system. This result helps understand the neurological pathogenesis of inflammatory bowel disease. 展开更多
关键词 Inflammatory bowel disease Trinitrobenzenesulfonic acid Two-dimensional electrophoresis-basedproteomic technique dorsal root ganglia Spinal cord
下载PDF
Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation,cell death and nociception 被引量:5
8
作者 Sarah L.Martin Adam J.Reid +2 位作者 Alexei Verkhratsky Valerio Magnaghi Alessandro Faroni 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期939-947,共9页
Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, ce... Subsequent to a peripheral nerve injury, there are changes in gene expression within the dorsal root ganglia in response to the damage. This review selects factors which are well-known to be vital for inflammation, cell death and nociception, and highlights how alterations in their gene expression within the dorsal root ganglia can affect functional recovery. The majority of studies used polymerase chain reaction within animal models to analyse the dynamic changes following peripheral nerve injuries. This review aims to highlight the factors at the gene expression level that impede functional recovery and are hence are potential targets for therapeutic approaches. Where possible the experimental model, specific time-points and cellular location of expression levels are reported. 展开更多
关键词 Gene expression polymerase chain reaction dorsal root ganglia INFLAMMATION NOCICEPTION cell death peripheral NERVE injury Schwann CELLS satellite GLIAL CELLS NERVE regeneration
下载PDF
Increased phosphorylation of cyclic AMP response element binding protein(CREB)in the dorsal root ganglia and superficial dorsal horn neurons following chronic constriction injury
9
作者 姚永兴 祝继洪 +2 位作者 宋学军 张励才 曾因明 《国外医学(麻醉学与复苏分册)》 2005年第4期193-198,共6页
Objective To investigate whether chronic constriction injury(CCI)of the sciatic nerve of rats could produce alterations in the phosphorylation of cyclic AMP response element binding(CREB)protein in dorsal root ganglia... Objective To investigate whether chronic constriction injury(CCI)of the sciatic nerve of rats could produce alterations in the phosphorylation of cyclic AMP response element binding(CREB)protein in dorsal root ganglia(DRG)and superficial dorsal horn neurons of the spinal cord.Methods Chronic constriction injury(CCI)of the sciatic nerve was employed as a model of neuropathic pain.Thirty-two Sprague-Dawley rats were randomly divided into Na⒍ve,Sham,CCI2w(received CCI for2weeks)and CCI4w(received CCI for4weeks)groups.Hind pawwithdrawal threshold to mechanical stimuli and withdrawal latency to thermal stimuli were used to determine the mechanical and thermal hyperalgesia.Then all the rats were deeply anesthetized and perfused intracardially with paraformaldehyde.The fixed L 4-5 spinal cord and the L 5 DRG ipsilateral to CCI were harvested for fixation.The pCREB-immunoreactive(pCREB-IR)cells in both DRG and superficial dorsal horn neurons were quantified for analysis using immunohistochemistry methods.Results On the14th day after sciatic nerve injury,all the rats exhibited significant mechanical and thermal hyperalgesia.The mechanical withdrawal thresholds to von Frey filament from CCI2w group decreased significantly compared to both baseline values and those of Sham group(P<0.01);Thermal withdwal latencies from CCI2w group decreased significantly compared to both baseline values and those of Sham group(P<0.01).Some rats from Sham group also showed mechanical hyperalgesia compared to both baseline values and those of Na⒍ve group(P<0.01).28days after CCI,both mechanical and thermal hypersensitivity were significantly alleviated,with no statistical significance compared to those of Sham group.On the14th day after CCI,the number of pCREB-IR cells significantly increased in ipsilateral L 5 DRGs and superficial dorsal horns(P<0.01)compared to Sham group.The number of phosphorylated CREB-IR cells in the ipsilateral DRGs from Sham group also increased compared to that of Naive rats(P<0.05).There were no significant statistical differences of numbers of CREB-IR neuron between Sham group and CCI4wgroup.Conclusion CCI increases CREB phosphorylation both in DRG and superficial dorsal horn neurons of the lumbar spinal cord,and may be one of the key molecular mechanisms of central and peripheral sensitization following peripheral nerve injury. 展开更多
关键词 磷酸化 蛋白质 神经中枢 麻醉处理
下载PDF
The dorsal root ganglion as a target for neurorestoration in neuropathic pain 被引量:1
10
作者 Guillermo Estivill-Torrús Ana Belen Martínez-Padilla +2 位作者 Lourdes Sánchez-Salido Anne Baron-Van Evercooren Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期296-301,共6页
Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.... Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain. 展开更多
关键词 CYTOKINES dorsal root ganglia genetic factors neuropathic pain neurotrophic factors pharmacologic and nonpharmacologic therapies satellite glial cells sensory neurons
下载PDF
Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia 被引量:4
11
作者 GU Yun HU Nan +2 位作者 LIU Jie DING Fei GU XiaoSong 《Science China(Life Sciences)》 SCIE CAS 2010年第9期1057-1064,共8页
To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expressio... To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs. 展开更多
关键词 dorsal root ganglia cell culture stem/progenitor cells IMMUNOCYTOCHEMISTRY induced differentiation
原文传递
Expression changes of parvalbumin and microtubule-associated protein 2 induced by chronic constriction injury in rat dorsal root ganglia 被引量:3
12
作者 CAO Ming-hui JI Feng-tao +1 位作者 LIU Ling LI Feng 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第14期2184-2190,共7页
Background Parvalbumin (PV), as a mobile endogenous calcium buffer, plays an important role in affecting temporospatial characteristics of calcium transients and in modulating calcium homeostasis. PV is expressed in... Background Parvalbumin (PV), as a mobile endogenous calcium buffer, plays an important role in affecting temporospatial characteristics of calcium transients and in modulating calcium homeostasis. PV is expressed in neurons in the dorsal root ganglion (DRG) and spinal dorsal horn and may be involved in synaptic transmission through regulating cytoplasm calcium concentrations. But the exact role of PV in peripheral sensory neurons remains unknown.Microtubule-associated protein 2 (MAP-2), belonging to structural microtubule-associated protein family, is especially vulnerable to acute central nervous system (CNS) injury, and there will be rapid loss of MAP-2 at the injury site. The present study investigated the changes of PV expressing neurons and the MAP-2 neurons in the DRG after an operation for chronic constriction injury to the unilateral sciatic nerve (CCI-SN), in order to demonstrate the possible roles of PV and MAP-2 in transmission and modulation of peripheral nociceptive information.Methods Seventy-two adult male Sprague-Dawley (SD) rats, weighing 180-220 g, were randomly divided into two groups (36 rats in each group), the sham operation group and chronic constriction injury (CCI) group. Six rats in each group were randomly selected to receive mechanical and thermal sensitivity tests at one day before operation and 1,3, 5,7, and 14 days after surgery. After pain behavioral test, ipsilateral lumbar fifth DRGs were removed and double immunofluorescence staining was performed to assess the expression changes of PV and of MAP2 expressing neurons in the L5 DRG before or after surgery.Results The animals with CCI-SN showed obvious mechanical allodynia and thermal hyperalgesia (P<0.05). Both the thermal and mechanical hyperalgesia decreased to their lowest degree at 7 days after surgery compared to the baseline before surgery (P<0.01). In normal rats before surgery, a large number of neurons were MAP-2 single labeled cells, and just a small number of PV-expressed neurons were found. PV-positive neurons, PV-positive nerve fibers and PV-negative neurons, formed a direct or close contact for cross-talk. We used immunocytochemical staining to quantify the time course of changes to PV and MAP-2 expressing neurons in tissue, and found that the number of PV expressing neurons began to slightly decrease at 3 days after surgery, and had a significant reduction at CCI day 5, day 7 (P<0.05). But MAP-2 neurons significantly decreased on just the 3rd day after CCI (P<0.05). No changes in PV and MAP-2 expression were almost found in sham operated rats. The number of PV positive neurons, was positively correlated with the hyperalgesia threshold.Conclusions A sharp decline in MAP-2 neurons may be the early response to surgical injury, and PV positive neurons were much more effective at affecting the changes of pain behaviors, indicating that the down-regulation of PV protein could participate in, at least in part, the modulation of nociceptive transmission. 展开更多
关键词 PARVALBUMIN microtubule-associated protein 2 dorsal root ganglia neuropathic pain
原文传递
Decreased miR-325-5p Contributes to Visceral Hypersensitivity Through Post-transcriptional Upregulation of CCL2 in Rat Dorsal Root Ganglia 被引量:5
13
作者 Rui Wu Ping-An Zhang +5 位作者 Xuelian Liu Yuan Zhou Meijie Xu Xinghong Jiang Jun Yan Guang-Yin Xu 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第5期791-801,共11页
Chronic visceral hypersensitivity is an important type of chronic pain with unknown etiology and pathophysiology. Recent studies have shown that epigenetic regulation plays an important role in the development of chro... Chronic visceral hypersensitivity is an important type of chronic pain with unknown etiology and pathophysiology. Recent studies have shown that epigenetic regulation plays an important role in the development of chronic pain conditions. However, the role of mi RNA-325-5 p in chronic visceral pain remains unknown. The present study was designed to determine the roles and mechanism of mi RNA-325-5 p in a rat model of chronic visceral pain.This model was induced by neonatal colonic inflammation(NCI). In adulthood, NCI led to a significant reduction in the expression of mi RNA-325-5 p in colon-related dorsal root ganglia(DRGs), starting to decrease at the age of4 weeks and being maintained to 8 weeks. Intrathecal administration of mi RNA-325-5 p agomir significantly enhanced the colorectal distention(CRD) threshold in a time-dependent manner. NCI also markedly increased the expression of CCL2(C-C motif chemokine ligand 2) in colon-related DRGs at the m RNA and protein levels relative to age-matched control rats. The expression of CXCL12, IL33, SFRS7, and LGI1 was not significantlyaltered in NCI rats. CCL2 was co-expressed in Neu Npositive DRG neurons but not in glutamine synthetasepositive glial cells. Furthermore, CCL2 was mainly expressed in isolectin B4-binding-and calcitonin generelated peptide-positive DRG neurons but in few NF-200-positive cells. More importantly, CCL2 was expressed in mi R-325-5 p-positive DRG neurons. Intrathecal injection of mi RNA-325-5 p agomir remarkably reduced the upregulation of CCL2 in NCI rats. Administration of Bindarit, an inhibitor of CCL2, markedly raised the CRD threshold in NCI rats in a dose-and time-dependent manner. These data suggest that NCI suppresses mi RNA-325-5 p expression and enhances CCL2 expression, thus contributing to visceral hypersensitivity in adult rats. 展开更多
关键词 VISCERAL pain dorsal root ganglia miRNA-325-5p CCL2 EPIGENETIC regulation
原文传递
Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats 被引量:3
14
作者 Li Zhao Wei Qu +2 位作者 Yuxuan Wu Hao Ma Huajun Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1961-1967,共7页
Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are compl... Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (〉95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects. 展开更多
关键词 nerve regeneration Schwann cells dorsal root ganglia melanocyte medium FIBROBLASTS poly(lactic-co-glycolic acid) CHITOSAN sciatic nerve defect NSFC grants neural regeneration
下载PDF
A novel primary culture method for high-purity satellite glial cells derived from rat dorsal root ganglion 被引量:1
15
作者 Xian-Bin Wang Wei Ma +5 位作者 Tao Luo Jin-Wei Yang Xiang-Peng Wang Yun-Fei Dai Jian-Hui Guo Li-Yan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第2期339-345,共7页
Satellite glial cells surround neurons within dorsal root ganglia. Previous studies have focused on single-cell suspensions of cultured neurons derived from rat dorsal root ganglia. At present, the primary culture met... Satellite glial cells surround neurons within dorsal root ganglia. Previous studies have focused on single-cell suspensions of cultured neurons derived from rat dorsal root ganglia. At present, the primary culture method for satellite glial cells derived from rat dorsal root ganglia requires no digestion skill. Hence, the aim of the present study was to establish a novel primary culture method for satellite glial cells derived from dorsal root ganglia. Neonatal rat spine was collected and an incision made to expose the transverse protrusion and remove dorsal root ganglia. Dorsal root ganglia were freed from nerve fibers, connective tissue, and capsule membranes, then rinsed and transferred to 6-well plates, and cultured in a humidified 5% CO_2 incubator at 37°C. After 3 days in culture, some cells had migrated from dorsal root ganglia. After subculture, cells were identified by immunofluorescence labeling for three satellite glial cell-specific markers: glutamine synthetase, glial fibrillary acidic protein, and S100β. Cultured cells expressed glutamine synthetase, glial fibrillary acidic protein, and S100β, suggesting they are satellite glial cells with a purity of > 95%. Thus, we have successfully established a novel primary culture method for obtaining high-purity satellite glial cells from rat dorsal root ganglia without digestion. 展开更多
关键词 nerve REGENERATION cell culture dorsal root ganglia IMMUNOFLUORESCENCE identification SATELLITE GLIAL cells neural REGENERATION
下载PDF
Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation 被引量:1
16
作者 Miao Gu Xiao Cheng +3 位作者 Di Zhang Weiyan Wu Yi Cao Jianghong He 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期190-195,共6页
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and foun... Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate.Howeve r,it is unclear what factors play a role in this process.In this study,we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury.Platelet factor is an important molecule in cell apoptosis,diffe rentiation,survival,and proliferation.Further,polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury.Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells.We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells,while exogenously applied platelet factor 4 stimulated Schwann cell prolife ration and migration and neuronal axon growth.Furthermore,knocking out platelet factor 4 inhibited the prolife ration of Schwann cells in injured rat sciatic nerve.These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth.Thus,platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury. 展开更多
关键词 axon elongation bioinformatic analysis cell migration cell proliferation dorsal root ganglia peripheral nerve regeneration peripheral nerve trauma platelet factor 4 rat sciatic nerve Schwann cells
下载PDF
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury
17
作者 Xinyu You Lin Niu +4 位作者 Jiafeng Fu Shining Ge Jiangwei Shi Yanjun Zhang Pengwei Zhuang 《Neural Regeneration Research》 SCIE CAS 2025年第8期2153-2168,共16页
Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for pati... Traumatic brain injury is a prevalent disorder of the central nervous system.In addition to primary brain parenchymal damage,the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury;however,the underlying pathogenesis remains unclear,and effective intervention methods are lacking.Intestinal dysfunction is a significant consequence of traumatic brain injury.Being the most densely innervated peripheral tissue in the body,the gut possesses multiple pathways for the establishment of a bidirectional“brain-gut axis”with the central nervous system.The gut harbors a vast microbial community,and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal,hormonal,and immune pathways.A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications.We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury,with a specific focus on the complex biological processes of peripheral nerves,immunity,and microbes triggered by traumatic brain injury,encompassing autonomic dysfunction,neuroendocrine disturbances,peripheral immunosuppression,increased intestinal barrier permeability,compromised responses of sensory nerves to microorganisms,and potential effector nuclei in the central nervous system influenced by gut microbiota.Additionally,we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury.This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the“brain-gut-microbiota axis.” 展开更多
关键词 traumatic brain injury brain-gut-microbiome axis gut microbiota NEUROIMMUNE immunosuppression host defense vagal afferents bacterial infection dorsal root ganglia nociception neural circuitry
下载PDF
Lactobacillus plantarum AR495 improves stress-induced irritable bowel syndrome in rats by targeting gut microbiota and Mast cell-PAR2-TRPV1 signaling pathway
18
作者 Hongyun Zhang Guangqiang Wang +6 位作者 Zhiqiang Xiong Zhuan Liao Yangyan Qian Xin Song Li Sui Lianzhong Ai Yongjun Xia 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期698-708,共11页
Probiotics have great potential in regulating intestinal pain.In this study,the effects of Lactobacillus plantarum AR495 on the visceral sensitivity and gut microbiota of irritable bowel syndrome(IBS)rats were studied... Probiotics have great potential in regulating intestinal pain.In this study,the effects of Lactobacillus plantarum AR495 on the visceral sensitivity and gut microbiota of irritable bowel syndrome(IBS)rats were studied.The results showed that tryptase released after mast cell activation and degranulation plays a key role in visceral pain,and L.plantarum AR495 reduced the stimulation of colonic mast cells and the expression of protease-activated receptor 2(PAR2)and TRPV1 in dorsal root ganglia.Research further showed that supplementation with L.plantarum AR495 increased the level of short-chain fatty acids(SCFAs)and enhanced the barrier function of the colon.In addition,the microbiota analysis of the colon indicated that L.plantarum AR495 promoted the proliferation of Bifidobacterium and inhibited the proliferation of Lachnospiraceae,which alleviated the imbalance of the intestinal microbiota caused by IBS to a certain extent.In total,L.plantarum AR495 might reduce visceral sensitivity through the Mast cell-PAR2-TRPV1 signaling pathway by maintaining the homeostasis of the intestinal barrier. 展开更多
关键词 Lactobacillus plantarum Irritable bowel syndrome Visceral sensitivity dorsal root ganglia TRYPTASE MICROBIOTA
下载PDF
长春胺衍生物Vin24通过Bcl-2/Bax/Caspase3通路改善糖尿病小鼠周围神经病变研究
19
作者 黄玉洁 阮园 王佳颖 《南京中医药大学学报》 CAS CSCD 北大核心 2024年第11期1189-1199,共11页
目的探讨长春胺衍生物Vin24对糖尿病周围神经病变(DPN)小鼠病理症状的保护作用及其作用机制。方法40只8周龄雄性C57BL/6N小鼠随机分为对照组、模型组、长春胺给药组和Vin24给药组。除对照组外,其余3组小鼠腹腔注射链脲佐菌素(STZ,150 mg... 目的探讨长春胺衍生物Vin24对糖尿病周围神经病变(DPN)小鼠病理症状的保护作用及其作用机制。方法40只8周龄雄性C57BL/6N小鼠随机分为对照组、模型组、长春胺给药组和Vin24给药组。除对照组外,其余3组小鼠腹腔注射链脲佐菌素(STZ,150 mg·kg^(-1))诱导1型糖尿病模型,6周后开始给药。30只18周龄雄性db/db小鼠随机分为模型组、长春胺给药组和Vin24给药组,10只同窝阴性小鼠作为对照组。给药组每天灌胃长春胺(30 mg·kg^(-1))或Vin24(46.8 mg·kg^(-1)),对照组和模型组每天灌胃等体积的生理盐水,持续4周。通过检测机械异位痛觉和热痛觉阈值来评价小鼠感觉功能。利用激光散斑成像仪检测小鼠外周血流量。取足垫表皮组织进行PGP9.5免疫荧光染色评价表皮内神经纤维(IENF)密度;提取原代背根底神经节(DRG)神经元进行β-tubulinⅢ免疫荧光染色评价DRG神经元突起生长情况。此外,取DRG组织进行ATF3免疫荧光染色以及Western blot检测Bcl-2、Bax、Cleaved-Caspase3和Caspase3的蛋白水平来评价DRG神经元凋亡水平。结果与模型组相比,Vin24给药组小鼠的机械异位痛和热痛觉阈值降低(P<0.01,P<0.001),外周血流量增加(P<0.001);IENF密度增加(P<0.05,P<0.01),DRG神经元突起生长得到改善(P<0.001)。荧光染色结果显示,Vin24给药后小鼠DRG组织中神经元凋亡标记物ATF3的表达减少(P<0.01,P<0.001)。Western blot结果显示,抗凋亡蛋白Bcl-2的蛋白水平显著增加(P<0.05),促凋亡蛋白Bax和Cleaved-Caspase3的蛋白水平显著降低(P<0.05)。结论长春胺衍生物Vin24通过调控Bcl-2/Bax/Caspase3通路,抑制Cleaved-Caspase3的激活,降低神经元的凋亡水平,从而减轻DRG神经元损伤,改善糖尿病小鼠周围神经病变。 展开更多
关键词 糖尿病周围神经病变 背根底神经节 神经元凋亡 Bcl-2/Bax/Caspase3通路 长春胺衍生物
下载PDF
腹部推拿对UC模型大鼠背根神经节PLC/IP3R/Ca2+信号通路及AKT、p-AKT蛋白表达的影响
20
作者 江煜 方佳钰 +2 位作者 陈水金 林志刚 陈进城 《中医康复》 2024年第6期31-34,39,共5页
目的:观察腹部推拿干预溃疡性结肠炎(UC)模型大鼠后,对大鼠背根神经节PLC/IP3R/Ca^(2+)信号通路及AKT、p-AKT蛋白表达的影响,从而探讨腹部推拿对溃疡性结肠炎内脏高敏感的作用机制。方法:将36只SPF级大鼠分成空白组、模型组、推拿组、... 目的:观察腹部推拿干预溃疡性结肠炎(UC)模型大鼠后,对大鼠背根神经节PLC/IP3R/Ca^(2+)信号通路及AKT、p-AKT蛋白表达的影响,从而探讨腹部推拿对溃疡性结肠炎内脏高敏感的作用机制。方法:将36只SPF级大鼠分成空白组、模型组、推拿组、美沙拉嗪组4组,除空白组自由饮用蒸馏水外,其余各组采用自由饮5%葡聚糖硫酸钠溶液(DSS)的方法制备大鼠UC模型。造模第2日起推拿组采用腹部推拿进行干预,美沙拉嗪组进行美沙拉嗪溶液进行灌胃,空白组、模型组仅俯卧位束缚固定于固定器中。干预15日后,采用邻-甲酚酞络合铜比色法检测背根神经节(DRG)细胞钙离子浓度;ELISA法检测DRG组织中磷脂酶C(PLC)、肌醇1,4,5-三磷酸(IP3)、肌醇1,4,5-三磷酸受体(IP3R)的表达,WesternBlot检测DRG组织中蛋白激酶B(AKT)、磷酸化蛋白激酶B(p-AKT)蛋白表达。结果:与模型组比较,推拿组大鼠DRG细胞Ca^(2+)浓度和DRG组织中IP3、IP3R含量呈降低趋势,其中DRG细胞Ca^(2+)浓度有显著差异(P<0.01),其他指标的组间差异无统计学意义(P>0.05);推拿组DRG组织中PLC含量及AKT、p-AKT蛋白表达呈增加趋势,但差异无统计学意义(P>0.05)。结论:腹部推拿抑制UC内脏高敏感性,其作用机制可能与抑制PLC-IP3R-Ca^(2+)信号通路和促进UC大鼠背根神经节AKT激活有关。 展开更多
关键词 腹部推拿 溃疡性结肠炎 背根神经节 内脏高敏感 PLC/IP3R/Ca2+ AKT P-AKT
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部