We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. Th...We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. The device features a material stack that survives corrosive environments and enables high-temperature operation. To perform hightemperature testing, a specialized setup was constructed that allows the tuning fork to be characterized using traditional silicon electronics. The tuning fork has been operated at 600°C in the presence of dry steam for short durations. This tuning fork has also been tested to 64 000 G using a hard-launch, soft-catch shock implemented with a light gas gun. However, the device still has a strain sensitivity of 66 Hz/μe and strain resolution of 0. 045 μe in a 10 kHz bandwidth. As such, this balanced-mass double-ended tuning fork can be used to create a variety of different sensors including strain gauges, accelerometers, gyroscopes, and pressure transducers. Given the adaptable fabrication process flow, this device could be useful to micro-electro-mechanical systems (MEMS) designers creating sensors for a variety of different applications.展开更多
Combined with the advantages and disadvantages of tuned liquid damper (TLD) and tuned mass damper (TMD),a double tuned liquid mass damper (TLMD) is proposed by replacing the rigid connection of TLD with the spring str...Combined with the advantages and disadvantages of tuned liquid damper (TLD) and tuned mass damper (TMD),a double tuned liquid mass damper (TLMD) is proposed by replacing the rigid connection of TLD with the spring structure.The motion equation of a single-degree-of-freedom structure with a TLMD attached at its top is found under harmonic excitation.Comparing the energy consumption and amplitude of primary structure with equal mass ratio TMD,it is found that the energy dissipation performance of TLMD is better in the effective phase region.The interaction process between TLMD and structure is analyzed,and the formula of phase deviation between the relative velocity of tank and the displacement of primary structure is deduced.By analyzing the influence of mass ratio,frequency ratio,damping ratio and water depth ratio on the damping effect,the results show that the frequency ratio and liquid depth ratio have great influence on the size and location of deep resonance peak,and the mass ratio and damping ratio have great influence on the width of the effective frequency band.The formula of equivalent damping ratio is proposed based on the principle of energy and it is found that the equivalent damping ratio is related to the phase deviation and change with the frequency ratio of the external excitation.展开更多
文摘We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. The device features a material stack that survives corrosive environments and enables high-temperature operation. To perform hightemperature testing, a specialized setup was constructed that allows the tuning fork to be characterized using traditional silicon electronics. The tuning fork has been operated at 600°C in the presence of dry steam for short durations. This tuning fork has also been tested to 64 000 G using a hard-launch, soft-catch shock implemented with a light gas gun. However, the device still has a strain sensitivity of 66 Hz/μe and strain resolution of 0. 045 μe in a 10 kHz bandwidth. As such, this balanced-mass double-ended tuning fork can be used to create a variety of different sensors including strain gauges, accelerometers, gyroscopes, and pressure transducers. Given the adaptable fabrication process flow, this device could be useful to micro-electro-mechanical systems (MEMS) designers creating sensors for a variety of different applications.
基金the National Natural Science Foundation of China(Nos.51578434 and 51378500)。
文摘Combined with the advantages and disadvantages of tuned liquid damper (TLD) and tuned mass damper (TMD),a double tuned liquid mass damper (TLMD) is proposed by replacing the rigid connection of TLD with the spring structure.The motion equation of a single-degree-of-freedom structure with a TLMD attached at its top is found under harmonic excitation.Comparing the energy consumption and amplitude of primary structure with equal mass ratio TMD,it is found that the energy dissipation performance of TLMD is better in the effective phase region.The interaction process between TLMD and structure is analyzed,and the formula of phase deviation between the relative velocity of tank and the displacement of primary structure is deduced.By analyzing the influence of mass ratio,frequency ratio,damping ratio and water depth ratio on the damping effect,the results show that the frequency ratio and liquid depth ratio have great influence on the size and location of deep resonance peak,and the mass ratio and damping ratio have great influence on the width of the effective frequency band.The formula of equivalent damping ratio is proposed based on the principle of energy and it is found that the equivalent damping ratio is related to the phase deviation and change with the frequency ratio of the external excitation.