期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments 被引量:6
1
作者 David R Myers Kan Bun Cheng +6 位作者 Babak Jamshidi Robert G Azevedo Debbie G Senesky Li Chen Mehran Mehregany Muthu B J Wijesundara Albert P Pisano 《Engineering Sciences》 EI 2012年第5期36-41,共6页
We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. Th... We present the fabrication and testing of a silicon carbide (SiC) balanced mass doublended tuning fork that survives harsh environments without compromising the device strain sensitivity and resolution bandwidth. The device features a material stack that survives corrosive environments and enables high-temperature operation. To perform hightemperature testing, a specialized setup was constructed that allows the tuning fork to be characterized using traditional silicon electronics. The tuning fork has been operated at 600°C in the presence of dry steam for short durations. This tuning fork has also been tested to 64 000 G using a hard-launch, soft-catch shock implemented with a light gas gun. However, the device still has a strain sensitivity of 66 Hz/μe and strain resolution of 0. 045 μe in a 10 kHz bandwidth. As such, this balanced-mass double-ended tuning fork can be used to create a variety of different sensors including strain gauges, accelerometers, gyroscopes, and pressure transducers. Given the adaptable fabrication process flow, this device could be useful to micro-electro-mechanical systems (MEMS) designers creating sensors for a variety of different applications. 展开更多
关键词 MEMS SiC thermal effects double ended tuning fork (DETF) harsh environment high temperature high shock INERTIAL STRAIN sensors
下载PDF
Parameter Optimization and Control Characteristics Analysis of TLMD System Based on Phase Deviation
2
作者 HU Jingjing XU Jiayun 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第3期372-383,共12页
Combined with the advantages and disadvantages of tuned liquid damper (TLD) and tuned mass damper (TMD),a double tuned liquid mass damper (TLMD) is proposed by replacing the rigid connection of TLD with the spring str... Combined with the advantages and disadvantages of tuned liquid damper (TLD) and tuned mass damper (TMD),a double tuned liquid mass damper (TLMD) is proposed by replacing the rigid connection of TLD with the spring structure.The motion equation of a single-degree-of-freedom structure with a TLMD attached at its top is found under harmonic excitation.Comparing the energy consumption and amplitude of primary structure with equal mass ratio TMD,it is found that the energy dissipation performance of TLMD is better in the effective phase region.The interaction process between TLMD and structure is analyzed,and the formula of phase deviation between the relative velocity of tank and the displacement of primary structure is deduced.By analyzing the influence of mass ratio,frequency ratio,damping ratio and water depth ratio on the damping effect,the results show that the frequency ratio and liquid depth ratio have great influence on the size and location of deep resonance peak,and the mass ratio and damping ratio have great influence on the width of the effective frequency band.The formula of equivalent damping ratio is proposed based on the principle of energy and it is found that the equivalent damping ratio is related to the phase deviation and change with the frequency ratio of the external excitation. 展开更多
关键词 double tuned liquid mass damper phase deviation optimal parameter equivalent damping ratio control effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部