A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a si...Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a single wedge, the present study considers oblique shock interactions attached to double wedges in a hypersonic combustible flow. The temperature/pressure increases sharply across the interaction zone that initiates an exothermic reaction, finally resulting in an Oblique Detonation Wave(ODW). Compared with the case for a single-wedge ODW, the double-wedge geometry has great potential to control the initiation of the ODW. As a tentative study, two-dimensional compressible Euler equations with a two-step induction-reaction kinetic model are used to solve the detonation dynamics triggered by a double wedge. The effects of the wedge angles and wedge corner locations on the initiation structures are investigated numerically.The results show an ODW complex comprising three Oblique Shock Waves(OSWs), an induction zone, a curved detonation front, and an unburned/low-temperature gas belt close to the surface of the second wedge. Both the increasing wedge angle and downstream wedge corner location lead to an abrupt OSW–ODW transition type, whereas the former corresponds to the shock–shock interaction and the later has a greater effect on the exothermic chemical process. Analysis of the shock polar and flow scale confirms that the OSW–ODW initiation structure mainly depends on the coupling of shocks and heat release in a confined initiation zone.展开更多
Flow separation occurs over the compression comers generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone mode...Flow separation occurs over the compression comers generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone model are useful for studying the separated flow features. Flow fields around concave comers are relatively complicated and produce several classical viscous flow features depending on the combination of the first and second wedge or cone half apex angles. Particularly characteristic phenomena are mainly shock/boundary layer, shock/shock interaction, unsteady shear layers and non-linear shock oscillations. Although most of these basic gas dynamics characteristics are well known, it is not clear what happens at high enthalpy conditions. This paper reports a result of flow fields over a double wedge at a stagnation enthalpy of 4.8 MJ/kg. The experiment was carried out in a free piston shock tunnel at a nominal Mach number of 6.99. Schlieren and double exposure holographic interferometry were applied to visualize the flow field over the double wedge.展开更多
In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shoc...In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11× 10^5- 3.49× 10^5, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized展开更多
Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, w...Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, which was built strictly on local variables. However, two core correlations in the model had not been published until 2009. In this paper, after considerable analyses and discussions of the mechanism of this transition model and a series of numerical validations in the skin friction coefficient of flat plate boundary layers, a new correlation based on free-stream turbulence intensity is developed, and the empirical correlation of the transition onset momentum thickness Reynold number aiming at the hypersonic transition is improved. Low-speed/transonic airfoils and a hypersonic double wedge fiat are tested to prove the reliability and practicability of this correlation.展开更多
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
基金supported by the National Natural Science Foundation of China(No.11822202)。
文摘Pressure-gain combustion has gained attention for airbreathing ramjet engine applications owing to its better thermodynamic efficiency and fuel consumption rate. In contrast with traditional detonation induced by a single wedge, the present study considers oblique shock interactions attached to double wedges in a hypersonic combustible flow. The temperature/pressure increases sharply across the interaction zone that initiates an exothermic reaction, finally resulting in an Oblique Detonation Wave(ODW). Compared with the case for a single-wedge ODW, the double-wedge geometry has great potential to control the initiation of the ODW. As a tentative study, two-dimensional compressible Euler equations with a two-step induction-reaction kinetic model are used to solve the detonation dynamics triggered by a double wedge. The effects of the wedge angles and wedge corner locations on the initiation structures are investigated numerically.The results show an ODW complex comprising three Oblique Shock Waves(OSWs), an induction zone, a curved detonation front, and an unburned/low-temperature gas belt close to the surface of the second wedge. Both the increasing wedge angle and downstream wedge corner location lead to an abrupt OSW–ODW transition type, whereas the former corresponds to the shock–shock interaction and the later has a greater effect on the exothermic chemical process. Analysis of the shock polar and flow scale confirms that the OSW–ODW initiation structure mainly depends on the coupling of shocks and heat release in a confined initiation zone.
文摘Flow separation occurs over the compression comers generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone model are useful for studying the separated flow features. Flow fields around concave comers are relatively complicated and produce several classical viscous flow features depending on the combination of the first and second wedge or cone half apex angles. Particularly characteristic phenomena are mainly shock/boundary layer, shock/shock interaction, unsteady shear layers and non-linear shock oscillations. Although most of these basic gas dynamics characteristics are well known, it is not clear what happens at high enthalpy conditions. This paper reports a result of flow fields over a double wedge at a stagnation enthalpy of 4.8 MJ/kg. The experiment was carried out in a free piston shock tunnel at a nominal Mach number of 6.99. Schlieren and double exposure holographic interferometry were applied to visualize the flow field over the double wedge.
文摘In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11× 10^5- 3.49× 10^5, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized
文摘Recently, introducing a transition predicting model into the Reynolds averaged Navier-Stokes (RANS) environment has been paid more and more attention. Langtry proposed a correlation-based transition model in 2006, which was built strictly on local variables. However, two core correlations in the model had not been published until 2009. In this paper, after considerable analyses and discussions of the mechanism of this transition model and a series of numerical validations in the skin friction coefficient of flat plate boundary layers, a new correlation based on free-stream turbulence intensity is developed, and the empirical correlation of the transition onset momentum thickness Reynold number aiming at the hypersonic transition is improved. Low-speed/transonic airfoils and a hypersonic double wedge fiat are tested to prove the reliability and practicability of this correlation.