Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization...Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for ...High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.展开更多
Double-arch tunnels,as one of the popular forms of tunnels,might be exposed to boiling liquid expanding vapour explosions(BLEVEs)associated with transported liquified petroleum gas(LPG),which could cause damage to the...Double-arch tunnels,as one of the popular forms of tunnels,might be exposed to boiling liquid expanding vapour explosions(BLEVEs)associated with transported liquified petroleum gas(LPG),which could cause damage to the tunnel and even catastrophic collapse of the tunnel in extreme cases.However,very limited study has investigated the performance of double-arch tunnels when exposed to internal BLEVEs and in most analyses of tunnel responses to accidental explosions.The TNT-equivalence method was used to approximate the explosion load,which may lead to inaccurate tunnel response predictions.This study numerically investigates the response of typical double-arch tunnels to an internal BLEVE resulting from the instantaneous rupture of a 20 m^(3) LPG tank.Effects of various factors,including in-situ stresses,BLEVE locations,and lining configurations on tunnel responses are examined.The results show that the double-arch tunnels at their early-operation ages are more vulnerable to severe damage when exposed to the BLEVE due to the low action of in-situ stress of rock mass on the response of early-age tunnels.It is also found that directing the LPG tank to different driving lanes inside tunnels can affect the BLEVE-induced tunnel response more significantly than varying the configurations of tunnel lining.Moreover,installing section-steel arches in the mid-wall can effectively improve the blast resistance of the double-arch tunnels against the internal BLEVE.In addition,the prediction models based on multi-variate nonlinear regressions and machine learning methods are developed to predict the BLEVE-induced damage levels of the double-arch tunnels without and with section-steel arches.展开更多
Recent developments in tunneling have stimulated design practitioners to more effectively utilize the underground spaces.However,tunneling at shallow depth in soft grounds gives rise to concerns associated with tunnel...Recent developments in tunneling have stimulated design practitioners to more effectively utilize the underground spaces.However,tunneling at shallow depth in soft grounds gives rise to concerns associated with tunnel instability.Umbrella arch method(UAM),as a pre-reinforcement approach of tunnels in complex geological conditions,is widely used to maintain the tunnel stability.Quantitative assessment of the impacts of the entire approach and forepoling pipe features on tunnel stability remains challenging due to the complex nature of the UAM application.This study aimed to assess the effect of pipe design parameters on reinforcing the tunnels excavated in soft grounds.This practical investigation considered the actual field conditions attributed to the tunneling procedure and UAM deployment.Then,the tunneling process was modeled and the tunnel excavation-induced settlements were calculated.The post-processed results confirmed that deploying the UAM substantially reduced the tunnel crown and ground surface settlements by 76%and 42%,respectively.Investigation of various design parameters of pipes underscored the significance of incorporating the optimum value for each individual parameter into design schemes to more effectively control the settlements.Additionally,contrasting the settlement reduction rates(SRRs)for pipe design variables showed that the tunnel stability is more sensitive to the changes in the values of diameter and length,compared to values of the installation angle and center-tocenter distance of the pipes.展开更多
During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such...During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such situations it is necessary to improve the properties of the ground prior to drilling operations. In order to acquire tunnel face stability during excavation operations in areas with loose soil fault or areas with lack of adhesion, there are various methods such as split cross drilling, frame holder or auxiliary pre-holding methods such as umbrella arch method;pre-holding methods must provide safety when drilling and must be affordable, economically. In this study, we assessed the previous studies on methods and behaviors of umbrella arch strategy in reinforcing the concrete tunnels, reached the purpose with experimental and numerical methods and offered the latest design achievements, implementation progresses and analysis in relation with this method.展开更多
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the...The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.展开更多
基金funded by the Natural Science Foundation of Hebei Province(No:E2020210068)Project of Science and Technology Research and Development Program of China National Railway Group Co.,Ltd.(No:N2020G009).
文摘Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects.
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金supported partially by the National Natural Science Foundation of China(42277158,41972277,and U1934212)。
文摘High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.
基金financial support from the Australian Research Council(ARC)via Australian Laureate Fellowship(FL180100196).
文摘Double-arch tunnels,as one of the popular forms of tunnels,might be exposed to boiling liquid expanding vapour explosions(BLEVEs)associated with transported liquified petroleum gas(LPG),which could cause damage to the tunnel and even catastrophic collapse of the tunnel in extreme cases.However,very limited study has investigated the performance of double-arch tunnels when exposed to internal BLEVEs and in most analyses of tunnel responses to accidental explosions.The TNT-equivalence method was used to approximate the explosion load,which may lead to inaccurate tunnel response predictions.This study numerically investigates the response of typical double-arch tunnels to an internal BLEVE resulting from the instantaneous rupture of a 20 m^(3) LPG tank.Effects of various factors,including in-situ stresses,BLEVE locations,and lining configurations on tunnel responses are examined.The results show that the double-arch tunnels at their early-operation ages are more vulnerable to severe damage when exposed to the BLEVE due to the low action of in-situ stress of rock mass on the response of early-age tunnels.It is also found that directing the LPG tank to different driving lanes inside tunnels can affect the BLEVE-induced tunnel response more significantly than varying the configurations of tunnel lining.Moreover,installing section-steel arches in the mid-wall can effectively improve the blast resistance of the double-arch tunnels against the internal BLEVE.In addition,the prediction models based on multi-variate nonlinear regressions and machine learning methods are developed to predict the BLEVE-induced damage levels of the double-arch tunnels without and with section-steel arches.
文摘Recent developments in tunneling have stimulated design practitioners to more effectively utilize the underground spaces.However,tunneling at shallow depth in soft grounds gives rise to concerns associated with tunnel instability.Umbrella arch method(UAM),as a pre-reinforcement approach of tunnels in complex geological conditions,is widely used to maintain the tunnel stability.Quantitative assessment of the impacts of the entire approach and forepoling pipe features on tunnel stability remains challenging due to the complex nature of the UAM application.This study aimed to assess the effect of pipe design parameters on reinforcing the tunnels excavated in soft grounds.This practical investigation considered the actual field conditions attributed to the tunneling procedure and UAM deployment.Then,the tunneling process was modeled and the tunnel excavation-induced settlements were calculated.The post-processed results confirmed that deploying the UAM substantially reduced the tunnel crown and ground surface settlements by 76%and 42%,respectively.Investigation of various design parameters of pipes underscored the significance of incorporating the optimum value for each individual parameter into design schemes to more effectively control the settlements.Additionally,contrasting the settlement reduction rates(SRRs)for pipe design variables showed that the tunnel stability is more sensitive to the changes in the values of diameter and length,compared to values of the installation angle and center-tocenter distance of the pipes.
文摘During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such situations it is necessary to improve the properties of the ground prior to drilling operations. In order to acquire tunnel face stability during excavation operations in areas with loose soil fault or areas with lack of adhesion, there are various methods such as split cross drilling, frame holder or auxiliary pre-holding methods such as umbrella arch method;pre-holding methods must provide safety when drilling and must be affordable, economically. In this study, we assessed the previous studies on methods and behaviors of umbrella arch strategy in reinforcing the concrete tunnels, reached the purpose with experimental and numerical methods and offered the latest design achievements, implementation progresses and analysis in relation with this method.
文摘The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future.