Traditional drug delivery methods are prone to large fluctuations in drug concentration and require multiple frequent doses.As a green material with excellent properties,cellulose has been widely used as a drug carrie...Traditional drug delivery methods are prone to large fluctuations in drug concentration and require multiple frequent doses.As a green material with excellent properties,cellulose has been widely used as a drug carrier for the development and preparation of drug controlled-release system.Based on the mechanisms of slow drug release,such as dissolution-diffusion release,degradation release,and nanochannel-controlled release,the preparation methods of cellulose-based drug carriers are introduced in this paper.The applications of cellulose-based drug carriers in the fields of antitumor therapy,antibacterial therapy,chronic disease treatment,and viral disease treatment are summarized with the aim of providing a useful reference for research on cellulose-based drug carriers.展开更多
Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(me...Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.展开更多
Potential of nanoscale triazine based dendritic macromolecules G1,G2 and G3 as solubility enhancers of drug was investigated.Effect of pH,concentration and generation of synthesized dendritic macromolecules on solubil...Potential of nanoscale triazine based dendritic macromolecules G1,G2 and G3 as solubility enhancers of drug was investigated.Effect of pH,concentration and generation of synthesized dendritic macromolecules on solubility of ketoprofen was studied.G3 dendrimer was further exploited as carrier for sustained release.Ketoprofen was encapsulated by inclusion complex method and also characterized by Flourier Transform Infrared spectroscopy.Sustained release study of ketoprofen from ketoprofen loaded dendrimer was carried out and compared with free ketoprofen.Hemolytic potential and Cytotoxicity assay using A-549 lung cancer cell lines revealed that synthesized triazine based dendritic macromolecules having more potential that commercially available PAMAM dendrimer.展开更多
Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexaned...Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexanediamine,folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites.The products were characterized by Fourier-transform infrared spectroscopy,transmission electron microscopy,and vibrating sample magnetometry.Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel.The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel,and thus had potential application in tumor-targeted combination chemotherapy.展开更多
Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment p...Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment protocol for bone tumour.However,drugs used in the treatment of bone tumour induce high toxicity to normal tissues including anaemia,neutropenia,thrombocytopenia,and heart damage which further reduce the survival rate of patients.Therefore,there is an urgent need to develop a new therapeutic approach for the treatment such that it induce maximum cell killing effect in tumor cells while sparing the healthy bone cells.In this article,some new perspectives were provided on the development of bone-targeted nano-drug carriers for bone cancer treatment.We hope such discussions wouldencourage more detailed and careful studies to support product development of bone-targeted drug carriers for bone cancer treatment.展开更多
Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of t...Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.展开更多
β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, vo...β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, volume-weight, tensile strength and the permeability were measured and the results indicated those properties fit the clinical usage of β-TCP drug carrier. Furthermore, drug release experiment in vitro showed that the carrier could prolong drug release in simulated body fluid which provides basis for the clinical use of β-TCP ceramics as drug carrier.展开更多
The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like struc...The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like structures as model membrane and drug carrier has been described.The exploration of many reports in different fields suggested that these open disk-like structures have great potential in studying interactions between drug-membrane and structure/function studies of membrane-bound proteins.Furthermore,they could be applied as promising carriers for in vivo delivery of drugs,protein and peptide.展开更多
Berberine(BBR)is an isoquinoline alkaloid that can be extracted from the traditional Chinese medicine Huang Lian.It has anti-inflammatory,anti-cancer,protection of nerves,hypoglycemic,blood lipid,anti-oxidation,antiba...Berberine(BBR)is an isoquinoline alkaloid that can be extracted from the traditional Chinese medicine Huang Lian.It has anti-inflammatory,anti-cancer,protection of nerves,hypoglycemic,blood lipid,anti-oxidation,antibacterial and other effects.It can be used clinically to treat chronic colitis,bacterial vaginitis,rheumatoid arthritis,breast cancer,liver cancer,Alzheimer's disease,diabetes,obesity and other common diseases.This paper reviews the pharmacological effects of berberine and the research progress of effective drug carriers in order to provide new ideas for the clinical application of berberine.展开更多
Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carrie...Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carriers. We synthesized MINPs via precipitation polymerization with vinblastine(VBL) as a model drug, and investigated the drug loading,releasing property in vitro and bio-distribution in vivo. The obtained MINPs, from 300 to 450 nm,had smooth surface and favorable dispersibility. The entrapment efficacy and drug loading capacity of VBL loaded MINPs(MINPs-VBL) were 83.25% and 8.72% respectively. In PBS(pH 7.4),MINPs-VBL showed sustained release behavior. The cumulative release percentage reached about 70% during 216 h and no burst release was observed. The releasing behavior of MINPsVBL in vitro conformed to the first-order kinetics model. MINPs-VBL and commercially available vinblastine sulfate injection(VBL injection) were injected via tail vein of SD rats respectively to investigate the bio-distribution. MINPs-VBL group showed higher concentration of VBL in tissues and serum than VBL injection group after 60 min, and the drug level in liver was the highest. MINPs-VBL exhibited liver targeting trend to some extent, which was based on the evaluation of drug targeting index(DTI) and drug selecting index(DSI).展开更多
Diblock copolymer poly(ethylene glycol) methyl ether–polylactide (MePEG–PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. T...Diblock copolymer poly(ethylene glycol) methyl ether–polylactide (MePEG–PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051 mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEGPLA micelles and IMC loaded MePEGPLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEGPLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.展开更多
Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critica...Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.展开更多
Drug carrier biocompatible and biodegradable nanoparticles of about 15 nm were prepared by solvent evaporation technique from star-shaped poly(D,L-lactide) synthesized using dipentaerythritol as core and Tin (II) ethy...Drug carrier biocompatible and biodegradable nanoparticles of about 15 nm were prepared by solvent evaporation technique from star-shaped poly(D,L-lactide) synthesized using dipentaerythritol as core and Tin (II) ethylhexanoate as catalyst.展开更多
Spinal cord injury(SCI)is a devastating traumatic disease seriously impairing the quality of life in patients.Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible.Deve...Spinal cord injury(SCI)is a devastating traumatic disease seriously impairing the quality of life in patients.Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible.Developing new approaches to regenerate the central nervous system is still the priority.Exosomes derived from mesenchymal stem cells(MSC-Exo)have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI,which are the key processes to rescue damaged spinal cord neurons and restore their functions.Nonetheless,MSC-Exo in SCI received scant attention.In this review,we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms.Furthermore,we also focus on the application of exosomes as drug carrier in SCI.In particular,it combs the advantages of exosomes as a drug carrier for SCI,imaging advantages,drug types,loading methods,etc.,which provides the latest progress for exosomes in the treatment of SCI,especially drug carrier.展开更多
Bone defects caused by tumor resection typically require bone repair materials to fill the defect sites.The development of multifunctional bone filling materials with integrated chemotherapy,photohermal therapy,and gu...Bone defects caused by tumor resection typically require bone repair materials to fill the defect sites.The development of multifunctional bone filling materials with integrated chemotherapy,photohermal therapy,and guided bone regeneration is very necessary and urgently needed.Herein,for the first time,the construction of novel multilayered Ti_(3)C_(2)T_(x) MXene(m-MXene)/nano-hydroxyaptite(nHAp)composites(m-MXene/nHAp)for bone repair is reported.The in situ growth of nHAp on multilayered Ti_(3)C_(2)T_(x) MXene is achieved through a facile hydrothermal method without using any organic additives.Due to the syner-gistic effects of nHAp and m-MXene,the m-MXene/nHAp composites show superior drug carrier perfor-mance with ultra-high drug loading capacity and ultra-long drug sustained release time.The molecular dynamics simulation results indicate that both Ti_(3)C_(2)T_(x) MXene and HAp show many adsorption sites and high binding energy with DOX.Moreover,the m-MXene/nHAp composites possess high photothermal conversion efficiency and excellent photothermal stability.The in situ growth of nano-HAp can signifi-cantly improve the biocompatibility of the m-MXene.The as-prepared multifunctional m-MXene/nHAp composites in this work can be used as bone filling powder and have great potential in bone defect reconstruction caused by bone tumor.展开更多
The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time.For most drugs,sufficient in vivo circulation time is the basis of high bioavail...The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time.For most drugs,sufficient in vivo circulation time is the basis of high bioavailability.Drug carrier plays an irreplaceable role in helping drug avoid being quickly recognized and cleared by mononuclear phagocyte system,to give drug enough time to arrive at targeted organ and tissue to play its therapeutic effect.The physical and chemical properties of drug carriers,such as size,shape,surface charge and surface modification,would affect their in vivo circulation time,metabolic behavior and biodistribution.The final circulation time of carriers is determined by the balance between macrophage recognitions,blood vessel penetration and urine excretion.Therefore,when designing the drug delivery system,we should pay much attention to the properties of drug carriers to get enough in vivo circulation time to arrive at target site eventually.This article mainly reviews the effect of carrier size,size,surface charge and surface properties on its circulation time in vivo,and discusses the mechanism of these properties affecting circulation time.This review has reference significance for the research of long-circulation drug delivery system.展开更多
Amphiphilic diblock copolymers composed of methoxy polyethylene glycol (MePEG) and poly(D,L-lactide) (PDLLA) were prepared for the preparation of polymeric micelles, The use of MePEG-PDLLA as drug carriers has b...Amphiphilic diblock copolymers composed of methoxy polyethylene glycol (MePEG) and poly(D,L-lactide) (PDLLA) were prepared for the preparation of polymeric micelles, The use of MePEG-PDLLA as drug carriers has been reported in the open literature, but there are only few data on the application of a series of MePEG-PDLLA copolymers with different lengths in the medical field, The shape of the polymeric micelles is also important in drug delivery, Studies on in vitro drug release profiles require a good sink condition. The critical micelle concentration of a series of MePEG-PDLLA has a significant role in drug release. To estimate their feasibility as a drug carrier, polymeric micelles made of MePEG-PDLLA block copolymer were prepared by the oil in water (O/VV) emulsion method. From dynamic light scattering (DLS) measurements, the size of the micelle formed was less than 200 nm, The critical micelle concentration of polymeric micelles with various compositions was determined using pyrene as a fluorescence probe. The critical micelle concentration decreased with increasing number of hydrophobic segments. MePEG-PDLLA micelles have a considerably low critical micelle concentration (0.4~0.5 μg/mL), which is apparently an advantage in utilizing these micelles as drug carriers. The morphology of the polymeric micelles was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), The micelles were found to be nearly spherical. The yield of the polymeric micelles obtained from the O/W method is as high as 85%.展开更多
Long-circulating drug carriers are highly desirable in drug delivery system.However,nonspecific protein adsorption leaves a great challenge in drug delivery of intravenous administration and significantly affects both...Long-circulating drug carriers are highly desirable in drug delivery system.However,nonspecific protein adsorption leaves a great challenge in drug delivery of intravenous administration and significantly affects both the pharmacokinetic profiles of the carrier and drugs,resulting in negatively affect of therapeutic efficiency.Therefore,it is important to make surface modification of drug carriers by protein-resistant materials to prolong the blood circulation time and increase the targeted accumulation of therapeutic agents.In this review,we highlight the possible mechanism of protein resistance and recent progress of the alternative protein-resistant materials and their drug carriers,such as poly(ethylene glycol),oligo(ethylene glycol),zwitterionic materials,and red blood cells adhesion.展开更多
A novel biocompatible polymer was prepared by grafting the derivate of β-cyclodextrin (6-SH-β-CD) onto poly(3,4-dihydroxycinnamic acid) (PDHCA) via Michael addition. PDHCA-β-CD nanoparticles were prepared by ...A novel biocompatible polymer was prepared by grafting the derivate of β-cyclodextrin (6-SH-β-CD) onto poly(3,4-dihydroxycinnamic acid) (PDHCA) via Michael addition. PDHCA-β-CD nanoparticles were prepared by the self-assembly of amphiphilic PDHCA-β-CD polymer with N,N-dimethylformamide (DMF) as good solvent and water as poor solvent. The PDHCA-β-CD nanoparticles were monodispersed with spherical morphology as shown in the scanning electron microscopic (SEM) images in accord with the result of dynamic light scattering (DLS) measurement. The size of the nanoparticles could be controlled from 60 to 180 nm by tuning the grafting degree (GD) of PDHCA-β-CD polymer and also significantly influenced by the amount of water used during the process. These as-prepared nanoparticles were stable without any significant change in the particle size after six-months' storage and even after being irradiated by UV at 2〉280 nm for hours. The formation mechanism of PDHCA-β-CD nanoparticles was explored. The content of doxombicin (DOX) loaded onto the nanoparticles was up to 39% with relatively high loading efficiency (approximately 78.8% of initial DOX introduced was loaded). In vitro release studies suggested that DOX released slowly from PDHCA-β-CD nanoparticles. These features strongly support the potential of developing PDHCA-β-CD nanoparticles as carriers for the controlled delivery of drug.展开更多
Neurodegenerative disease is one of the serious diseases of the human nervous system.There is no effective way to treat neurodegenerative diseases.Flavors such as curcumin,coumarin,have attracted increasing attention ...Neurodegenerative disease is one of the serious diseases of the human nervous system.There is no effective way to treat neurodegenerative diseases.Flavors such as curcumin,coumarin,have attracted increasing attention due to having a beneficial therapeutic effect on Alzheimer's disease and Parkinson's disease.But the use of most drugs is limited in clinical treatment because of blood-brain barrier.The use of nano-drug carriers such as liposomes,polymer micelles,polymer nanoparticles and magnetic nanoparticles,which can carry drugs across the blood-brain barrier,has brought hope for the treatment of neurodegenerative diseases.展开更多
基金Shaanxi Province College Student Innovation and Entrepreneurship Training Program Project(Project Number:S202310708098).
文摘Traditional drug delivery methods are prone to large fluctuations in drug concentration and require multiple frequent doses.As a green material with excellent properties,cellulose has been widely used as a drug carrier for the development and preparation of drug controlled-release system.Based on the mechanisms of slow drug release,such as dissolution-diffusion release,degradation release,and nanochannel-controlled release,the preparation methods of cellulose-based drug carriers are introduced in this paper.The applications of cellulose-based drug carriers in the fields of antitumor therapy,antibacterial therapy,chronic disease treatment,and viral disease treatment are summarized with the aim of providing a useful reference for research on cellulose-based drug carriers.
基金This work was supported by the National Natural Science Foundation of China (No.21334001 and No.91127030).
文摘Herein, we report self-assembly of tadpole-like single chain polymeric nanoparticles (TPPs) and the ultrasonic response of the resultant superparticles. The TPPs are with an intramolecularly crosslinked poly(2-(methacryloyloxy)ethyl pent-4-ynoate)-rpoly(hydroxyethyl methacrylate) (PMAEP-r-PHEMA) chain as the "head" and a poly(2- (dimethylamino)ethyl methacrylate (PDMAEMA) linear chain as the "tail", and are pre- pared simply and emciently by Glaser-coupling of the pendant alkynes in the PMAEP-r- PHEMA block in the common solvent methanol. The formation of the TPPs was confirmed by gel permeation chromatograph, nuclear magnetic resonance spectroscopy, dynamic light scattering, static dynamic scattering, and transmission electron microscopy. In aqueous solution, the amphiphilic TPPs could self-assemble into regular superparticles, driven by aggregation of the hydrophobic "heads". Since in the structure there is no chain entanglement and the embedding of PDMAEMA chains disturb close-packing of the "heads", the superpartieles are responsive to a low-energy ultrasonic vibration, as evidenced by greatly enhanced release of the functional molecules from the superparticles by treatment of a low-energy ultrasound. Therefore, the superparticles should be very promising in the use as the drug carriers that can be manipulated from a long distance, considering that ultrasonic energy can be focused at a small area in a relatively long distance from the ultrasound-radiating source.
文摘Potential of nanoscale triazine based dendritic macromolecules G1,G2 and G3 as solubility enhancers of drug was investigated.Effect of pH,concentration and generation of synthesized dendritic macromolecules on solubility of ketoprofen was studied.G3 dendrimer was further exploited as carrier for sustained release.Ketoprofen was encapsulated by inclusion complex method and also characterized by Flourier Transform Infrared spectroscopy.Sustained release study of ketoprofen from ketoprofen loaded dendrimer was carried out and compared with free ketoprofen.Hemolytic potential and Cytotoxicity assay using A-549 lung cancer cell lines revealed that synthesized triazine based dendritic macromolecules having more potential that commercially available PAMAM dendrimer.
基金Funded by Natural Science Fund of Jiangsu Overseas Research&Training Program for University Prominent Young&Middleaged Teachers and Presidents,the Natural Science Fund of Jiangsu Province(No.BK20130094)the Enterprise-universities Cooperative Innovation Fund of Jiangsu Province(No.BY2014016)
文摘Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexanediamine,folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites.The products were characterized by Fourier-transform infrared spectroscopy,transmission electron microscopy,and vibrating sample magnetometry.Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel.The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel,and thus had potential application in tumor-targeted combination chemotherapy.
基金The project supported by National Natural Science Foundation of China(81300964)the China Postdoctoral Science Foundation(2013M531611,2014T70648)
文摘Bone tumour is one of most common primary cancer which exhibits cancerous osteoblastic differentiation and malignant osteoid in patients.At present,chemotherapy(pre-and post-operative)is used as a standard treatment protocol for bone tumour.However,drugs used in the treatment of bone tumour induce high toxicity to normal tissues including anaemia,neutropenia,thrombocytopenia,and heart damage which further reduce the survival rate of patients.Therefore,there is an urgent need to develop a new therapeutic approach for the treatment such that it induce maximum cell killing effect in tumor cells while sparing the healthy bone cells.In this article,some new perspectives were provided on the development of bone-targeted nano-drug carriers for bone cancer treatment.We hope such discussions wouldencourage more detailed and careful studies to support product development of bone-targeted drug carriers for bone cancer treatment.
基金Supported by a grant from the foundation of Guangzhou Municipal Key Project for Special Scientific Plan(No.2008A1-E4101)
文摘Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.
基金Funded by the "973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201037)
文摘β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, volume-weight, tensile strength and the permeability were measured and the results indicated those properties fit the clinical usage of β-TCP drug carrier. Furthermore, drug release experiment in vitro showed that the carrier could prolong drug release in simulated body fluid which provides basis for the clinical use of β-TCP ceramics as drug carrier.
文摘The objective of this review is to outline the application of bicelles(or called bilayer micelles)and bilayer nanodisks in pharmaceutics,pharmaceutical analysis and biochemistry.The application of open disk-like structures as model membrane and drug carrier has been described.The exploration of many reports in different fields suggested that these open disk-like structures have great potential in studying interactions between drug-membrane and structure/function studies of membrane-bound proteins.Furthermore,they could be applied as promising carriers for in vivo delivery of drugs,protein and peptide.
基金Jilin Science and Technology Development Project(No.20190303183SF)Undergraduate Teaching Reform research Project of Jilin University(No.2019XYB318)
文摘Berberine(BBR)is an isoquinoline alkaloid that can be extracted from the traditional Chinese medicine Huang Lian.It has anti-inflammatory,anti-cancer,protection of nerves,hypoglycemic,blood lipid,anti-oxidation,antibacterial and other effects.It can be used clinically to treat chronic colitis,bacterial vaginitis,rheumatoid arthritis,breast cancer,liver cancer,Alzheimer's disease,diabetes,obesity and other common diseases.This paper reviews the pharmacological effects of berberine and the research progress of effective drug carriers in order to provide new ideas for the clinical application of berberine.
基金supported by the National Natural Science Foundation of China (grant number: 81173566)
文摘Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carriers. We synthesized MINPs via precipitation polymerization with vinblastine(VBL) as a model drug, and investigated the drug loading,releasing property in vitro and bio-distribution in vivo. The obtained MINPs, from 300 to 450 nm,had smooth surface and favorable dispersibility. The entrapment efficacy and drug loading capacity of VBL loaded MINPs(MINPs-VBL) were 83.25% and 8.72% respectively. In PBS(pH 7.4),MINPs-VBL showed sustained release behavior. The cumulative release percentage reached about 70% during 216 h and no burst release was observed. The releasing behavior of MINPsVBL in vitro conformed to the first-order kinetics model. MINPs-VBL and commercially available vinblastine sulfate injection(VBL injection) were injected via tail vein of SD rats respectively to investigate the bio-distribution. MINPs-VBL group showed higher concentration of VBL in tissues and serum than VBL injection group after 60 min, and the drug level in liver was the highest. MINPs-VBL exhibited liver targeting trend to some extent, which was based on the evaluation of drug targeting index(DTI) and drug selecting index(DSI).
基金National Natural Science Foundation of China (No.29836130)
文摘Diblock copolymer poly(ethylene glycol) methyl ether–polylactide (MePEG–PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051 mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEGPLA micelles and IMC loaded MePEGPLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEGPLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.
文摘Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml -1 . The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.
文摘Drug carrier biocompatible and biodegradable nanoparticles of about 15 nm were prepared by solvent evaporation technique from star-shaped poly(D,L-lactide) synthesized using dipentaerythritol as core and Tin (II) ethylhexanoate as catalyst.
基金The National natural science foundation (82172779)Military scientific research project fund (2019-JCJQ-ZD-120-50).
文摘Spinal cord injury(SCI)is a devastating traumatic disease seriously impairing the quality of life in patients.Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible.Developing new approaches to regenerate the central nervous system is still the priority.Exosomes derived from mesenchymal stem cells(MSC-Exo)have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI,which are the key processes to rescue damaged spinal cord neurons and restore their functions.Nonetheless,MSC-Exo in SCI received scant attention.In this review,we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms.Furthermore,we also focus on the application of exosomes as drug carrier in SCI.In particular,it combs the advantages of exosomes as a drug carrier for SCI,imaging advantages,drug types,loading methods,etc.,which provides the latest progress for exosomes in the treatment of SCI,especially drug carrier.
文摘Bone defects caused by tumor resection typically require bone repair materials to fill the defect sites.The development of multifunctional bone filling materials with integrated chemotherapy,photohermal therapy,and guided bone regeneration is very necessary and urgently needed.Herein,for the first time,the construction of novel multilayered Ti_(3)C_(2)T_(x) MXene(m-MXene)/nano-hydroxyaptite(nHAp)composites(m-MXene/nHAp)for bone repair is reported.The in situ growth of nHAp on multilayered Ti_(3)C_(2)T_(x) MXene is achieved through a facile hydrothermal method without using any organic additives.Due to the syner-gistic effects of nHAp and m-MXene,the m-MXene/nHAp composites show superior drug carrier perfor-mance with ultra-high drug loading capacity and ultra-long drug sustained release time.The molecular dynamics simulation results indicate that both Ti_(3)C_(2)T_(x) MXene and HAp show many adsorption sites and high binding energy with DOX.Moreover,the m-MXene/nHAp composites possess high photothermal conversion efficiency and excellent photothermal stability.The in situ growth of nano-HAp can signifi-cantly improve the biocompatibility of the m-MXene.The as-prepared multifunctional m-MXene/nHAp composites in this work can be used as bone filling powder and have great potential in bone defect reconstruction caused by bone tumor.
基金supported by Military Medical Innovation Project(16CXZ032)National Science and Technology Major Projects for“Major New Drugs Innovation and Development”(No.2018ZX09J18107-03,2018ZX09721003-005-009)。
文摘The present review sets out to discuss recent developments of the effects and mechanisms of carrier properties on their circulation time.For most drugs,sufficient in vivo circulation time is the basis of high bioavailability.Drug carrier plays an irreplaceable role in helping drug avoid being quickly recognized and cleared by mononuclear phagocyte system,to give drug enough time to arrive at targeted organ and tissue to play its therapeutic effect.The physical and chemical properties of drug carriers,such as size,shape,surface charge and surface modification,would affect their in vivo circulation time,metabolic behavior and biodistribution.The final circulation time of carriers is determined by the balance between macrophage recognitions,blood vessel penetration and urine excretion.Therefore,when designing the drug delivery system,we should pay much attention to the properties of drug carriers to get enough in vivo circulation time to arrive at target site eventually.This article mainly reviews the effect of carrier size,size,surface charge and surface properties on its circulation time in vivo,and discusses the mechanism of these properties affecting circulation time.This review has reference significance for the research of long-circulation drug delivery system.
基金Supported by the National Natural Science Foundation of China (No. 29836130)
文摘Amphiphilic diblock copolymers composed of methoxy polyethylene glycol (MePEG) and poly(D,L-lactide) (PDLLA) were prepared for the preparation of polymeric micelles, The use of MePEG-PDLLA as drug carriers has been reported in the open literature, but there are only few data on the application of a series of MePEG-PDLLA copolymers with different lengths in the medical field, The shape of the polymeric micelles is also important in drug delivery, Studies on in vitro drug release profiles require a good sink condition. The critical micelle concentration of a series of MePEG-PDLLA has a significant role in drug release. To estimate their feasibility as a drug carrier, polymeric micelles made of MePEG-PDLLA block copolymer were prepared by the oil in water (O/VV) emulsion method. From dynamic light scattering (DLS) measurements, the size of the micelle formed was less than 200 nm, The critical micelle concentration of polymeric micelles with various compositions was determined using pyrene as a fluorescence probe. The critical micelle concentration decreased with increasing number of hydrophobic segments. MePEG-PDLLA micelles have a considerably low critical micelle concentration (0.4~0.5 μg/mL), which is apparently an advantage in utilizing these micelles as drug carriers. The morphology of the polymeric micelles was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), The micelles were found to be nearly spherical. The yield of the polymeric micelles obtained from the O/W method is as high as 85%.
基金This work was supported by the National Natural Science Foundation of China(21304099,51203162,51103159,51373177)the National High Technology Research and Development Program(2014AA020708,2012AA022703,2012AA020804)+3 种基金the Instrument Developing Project of the Chinese Academy of Sciences(YZ201253,YZ201313)the Open Funding Project of the National Key Laboratory of Biochemical Engineering(Y22504A169)the‘Strategic Priority Research Program’of the Chinese Academy of Sciences(XDA09030301-3)Beijing Natural Science Foundation(Z141100000214010).
文摘Long-circulating drug carriers are highly desirable in drug delivery system.However,nonspecific protein adsorption leaves a great challenge in drug delivery of intravenous administration and significantly affects both the pharmacokinetic profiles of the carrier and drugs,resulting in negatively affect of therapeutic efficiency.Therefore,it is important to make surface modification of drug carriers by protein-resistant materials to prolong the blood circulation time and increase the targeted accumulation of therapeutic agents.In this review,we highlight the possible mechanism of protein resistance and recent progress of the alternative protein-resistant materials and their drug carriers,such as poly(ethylene glycol),oligo(ethylene glycol),zwitterionic materials,and red blood cells adhesion.
基金This research was supported by the National Nattlral Science Foundation of China (No. 51173072), the Fun- damental Research Funds for the Central Universities (JUSRP51408B) and Jiangsu Province Joint Innovation Funds (BY2014023-12).
文摘A novel biocompatible polymer was prepared by grafting the derivate of β-cyclodextrin (6-SH-β-CD) onto poly(3,4-dihydroxycinnamic acid) (PDHCA) via Michael addition. PDHCA-β-CD nanoparticles were prepared by the self-assembly of amphiphilic PDHCA-β-CD polymer with N,N-dimethylformamide (DMF) as good solvent and water as poor solvent. The PDHCA-β-CD nanoparticles were monodispersed with spherical morphology as shown in the scanning electron microscopic (SEM) images in accord with the result of dynamic light scattering (DLS) measurement. The size of the nanoparticles could be controlled from 60 to 180 nm by tuning the grafting degree (GD) of PDHCA-β-CD polymer and also significantly influenced by the amount of water used during the process. These as-prepared nanoparticles were stable without any significant change in the particle size after six-months' storage and even after being irradiated by UV at 2〉280 nm for hours. The formation mechanism of PDHCA-β-CD nanoparticles was explored. The content of doxombicin (DOX) loaded onto the nanoparticles was up to 39% with relatively high loading efficiency (approximately 78.8% of initial DOX introduced was loaded). In vitro release studies suggested that DOX released slowly from PDHCA-β-CD nanoparticles. These features strongly support the potential of developing PDHCA-β-CD nanoparticles as carriers for the controlled delivery of drug.
基金financially supported by the National High Technology Research and Development Program(No.2016YFA0200303)the National Natural Science Foundation of China(No.51373177,51573188,and 31522023)+2 种基金Beijing Municipal Science & Technology Commission(No.Z161100002616015)the Beijing Natural Science Foundation(No.2164071)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(No.XDA09030301-3)
文摘Neurodegenerative disease is one of the serious diseases of the human nervous system.There is no effective way to treat neurodegenerative diseases.Flavors such as curcumin,coumarin,have attracted increasing attention due to having a beneficial therapeutic effect on Alzheimer's disease and Parkinson's disease.But the use of most drugs is limited in clinical treatment because of blood-brain barrier.The use of nano-drug carriers such as liposomes,polymer micelles,polymer nanoparticles and magnetic nanoparticles,which can carry drugs across the blood-brain barrier,has brought hope for the treatment of neurodegenerative diseases.