A novel Uralic(U)-rich linear-hyperbranched mono-methoxy poly(ethylene glycol)-hyperbranched polyglycerol-graft-Uralic(mPEG-HPG-g-U)nanoparticle(NP)was prepared as drug carrier for antitumor methotrexate(MTX).Due to t...A novel Uralic(U)-rich linear-hyperbranched mono-methoxy poly(ethylene glycol)-hyperbranched polyglycerol-graft-Uralic(mPEG-HPG-g-U)nanoparticle(NP)was prepared as drug carrier for antitumor methotrexate(MTX).Due to the H-bond interaction of U with MTX and hydrophobic interaction,this NP exhibited high drug loading efficiency of up to 40%,which was significantly higher than that of traditional NPs based on U-absent copolymers(<15%).In addition,MTX-loaded mPEG-HPG-g-U NPs also demonstrated an acidity-accelerated drug release behavior.展开更多
基金This work was supported by the National Key Basic Research Program of China(2011CB606202)National Natural Science Foundation of China(Grant Nos.21374085,21174110 and 51303137)the Fundamental Research Funds for the Central Universities(2042014kf0193).
文摘A novel Uralic(U)-rich linear-hyperbranched mono-methoxy poly(ethylene glycol)-hyperbranched polyglycerol-graft-Uralic(mPEG-HPG-g-U)nanoparticle(NP)was prepared as drug carrier for antitumor methotrexate(MTX).Due to the H-bond interaction of U with MTX and hydrophobic interaction,this NP exhibited high drug loading efficiency of up to 40%,which was significantly higher than that of traditional NPs based on U-absent copolymers(<15%).In addition,MTX-loaded mPEG-HPG-g-U NPs also demonstrated an acidity-accelerated drug release behavior.