期刊文献+
共找到6,161篇文章
< 1 2 250 >
每页显示 20 50 100
Solvent transport dynamics and its effect on evolution of mechanical properties of nitrocellulose(NC)-based propellants under hot-air drying process
1
作者 Enfa Fu Mingjun Yi +1 位作者 Qianling Liu Zhenggang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期262-270,共9页
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics... Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants. 展开更多
关键词 Nitrocellulose-based propellants Solvent transport dynamics Mechanical properties Drying kinetics Effective solvent diffusion coefficient
下载PDF
Solubility measurement,correlation and thermodynamic properties of 2,3,4-trichloro-1,5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K 被引量:1
2
作者 Yun-Zhang Liu Lu-Yao Zhang +3 位作者 Dan He Li-Zhen Chen Zi-Shuai Xu Jian-Long Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期224-233,共10页
The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropan... The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropanol,n-butanol,toluene,dichloromethane,chloroform,tetrachloromethane,1,2-dichloroethane,acetone,ethyl acetate,acetonitrile,N-methylpyrrolidone(NMP),N,Ndimethylformamide dimethyl sulfoxide(DMF),dimethyl sulfoxide(DMSO).The solubility of TCDNB could be increased with increasing temperature in fifteen mono-solvents.TCDNB solubility is in the following order at 298.15 K:NMP>DMF>DMSO>toluene>acetone>ethyl acetate>dichloromethane>1,2-dich loroethane>chloroform>acetonitrile>tetrachloromethane>methanol>ethanol>n-butanol>isopropanol.The KAT-LSER model was used to investigate the solvent effect,which revealed that the hydrogen bond acidity of solvents has a greater effect on TCDNB solubility.The van't Hoff model,the modified Apelblat model,theλh model,and the non-random two liquid(NRTL)model were used to correlate the solubility of TCDNB.The calculated solubility data agreed well with the experimental data,and the modified Apelblat model fit best.Furthermore,the van't Hoff and Gibbs equations were also used to calculate the dissolution thermodynamic properties of TCDNB in various solvents.TCDNB dissolution could be an enthalpy-driven,non-spontaneous,and endothermic process in fifteen mono-solvents.The determination and fitting solubility of TCDNB,as well as the calculation of its thermodynamic properties,would be critical in the purification and crystallization of its preparation process research. 展开更多
关键词 2 3 4-Trichloro-1 5-dinitrobenzene(TCDNB) Solid-liquid equilibrium Laser dynamic method Solubility model Thermodynamics properties
下载PDF
Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities
3
作者 Yanpeng YUE Yongping WAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期525-546,共22页
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutio... The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites. 展开更多
关键词 piezoelectric composite dynamic effective property self-consistent method resonance frequency WAVELENGTH
下载PDF
Investigation of Electronic, Elastic and Dynamic Properties of AgNbO3 and AgTaO3 under Pressure: Ab Initio Calculation
4
作者 Sevket Simsek 《World Journal of Condensed Matter Physics》 2023年第2期57-77,共21页
Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compou... Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO<sub>3</sub> (0.37) and AgTaO<sub>3</sub> (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature. 展开更多
关键词 Electronic Structure Elastic Constants Born Effective Charges dynamic properties AgNbO3 AgTaO3
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
5
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy 被引量:10
6
作者 刘文辉 何圳涛 +1 位作者 陈宇强 唐思文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2179-2186,共8页
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil... To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance. 展开更多
关键词 2519A aluminum alloy dynamic mechanical properties Johnson-Cook model MICROSTRUCTURE
下载PDF
Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires 被引量:3
7
作者 王卫东 易成龙 樊康旗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3353-3361,共9页
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature... Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed. 展开更多
关键词 ultrathin nickel nanowires temperature dependence strain rate dependence tensile properties molecular dynamics simulation
下载PDF
Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys
8
作者 Yifan Song Xihai Li +5 位作者 Jinliang Xu Kai Zhang Yaozong Mao Hong Yan Huiping Li Rongshi Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2208-2220,共13页
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all... The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement. 展开更多
关键词 Mg-Zn-Gd-Ca-Mn alloy annealing treatment microstructure TEXTURE dynamic recrystallization mechanical properties
下载PDF
Dissipative Particle Dynamics Simulation of Microscopic Properties in Diblock Copolymer Films
9
作者 徐毅 宋小瑜 +3 位作者 张彰 王勇 陈捷 朱宪 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期274-280,I0001,共8页
Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr... Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary. 展开更多
关键词 Diblock copolymer film Microscopic property Dissipative particle dynamics
下载PDF
Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles
10
作者 Ling Pan Zhi Li +1 位作者 Yunhui Chen Guobin Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期231-242,共12页
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t... Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data. 展开更多
关键词 Molecular dynamics simulation Nanoparticle additives Ellipsoidal particles Tribological properties
下载PDF
Effect of Y element on atomic structure, glass forming ability,and magnetic properties of FeBC alloy
11
作者 肖晋桦 丁大伟 +3 位作者 李琳 孙奕韬 李茂枝 汪卫华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期440-446,共7页
The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f... The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications. 展开更多
关键词 Fe-based amorphous alloy ab initio molecular dynamic simulation glass-forming ability magnetic properties
原文传递
Effects of Rattling Behavior of K and Cd Atoms along Different Directions in Anisotropic KCdAs on Lattice Thermal Transport and Thermoelectric Properties
12
作者 Yue Wang Yinchang Zhao +1 位作者 Jun Ni Zhenhong Dai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期388-398,共11页
We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notabl... We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K). 展开更多
关键词 anharmonic lattice dynamics electron transport characteristics first principles calculation lattice thermal transport OCTAHEDRON thermoelectric properties
下载PDF
Molecular Dynamics Simulations of Silica Nanotube: Structural and Vibrational Properties Under Different Temperatures
13
作者 张胜利 张永红 +2 位作者 黄世萍 王鹏 田辉平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第5期497-503,621,共8页
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the ... Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental 展开更多
关键词 SiliCa nanotube Molecular dynamics Structural property Vibrational densityof state Infrared spectrum
下载PDF
INVESTIGATION OF STRUCTURE AND PROPERTIES FOR POLYMER SYSTEMS BASED ON DYNAMIC RHEOLOGICAL APPROACHES 被引量:6
14
作者 郑强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第4期341-354,共14页
The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes o... The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes of structure for these heterogeneous polymers.In the present article,recent progresses in the studies on dynamic rheology for heterogeneous polymer systems including polymeric composites filled with inorganic particles,thermo-oxidized polyolefins,phase- separated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed,mainly depending on the results by the authors' group.By means of rheological measurements,not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained,the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials. 展开更多
关键词 Heterogeneous polymers dynamic rheological properties PHASE-SEPARATION Morphology and structure Scaling and percolation behavior
下载PDF
Dynamic stress–strain properties of Ti–Al–V titanium alloys with various element contents 被引量:3
15
作者 Rui Liu Song-Xiao Hui +4 位作者 Wen-Jun Ye Cheng-Lin Li Yan-Yan Fu Yang Yu Xiao-Yun Song 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期555-559,共5页
A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimo... A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys. 展开更多
关键词 dynamic properties Alloying content Microstructure Titanium alloy
下载PDF
SYSTEMATIC AND DYNAMIC PROPERTIES OF CASTING HOT SPOT 被引量:2
16
作者 FanJinhui WeiBing WangFeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期153-155,共3页
The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of... The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved. 展开更多
关键词 hot spot systematic property dynamic property SOLIDIFICATION castingprocess
下载PDF
Combined effects of temperature and axial pressure on dynamic mechanical properties of granite 被引量:6
17
作者 Tu-bing YIN Rong-hua SHU +2 位作者 Xi-bing LI Pin WANG Long-jun DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2209-2219,共11页
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ... In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases. 展开更多
关键词 rock dynamics split Hopkincon pressure bar temperature pressure coupling dynamic mechanical properties
下载PDF
Mathematical modeling for dynamic stability of sandwich beam with variable mechanical properties of core 被引量:3
18
作者 M.GRYGOROWICZ E.MAGNUCKA-BLANDZI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第10期1361-1374,共14页
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ... The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables. 展开更多
关键词 mathematical modelling dynamic stability metal foam core with variable mechanical property static and dynamic equilibrium path angular frequency
下载PDF
Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates 被引量:20
19
作者 Yun-hai ZHANG Xin-min WANG +1 位作者 Chong WEI Qin-li ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1608-1617,共10页
To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy... To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively. 展开更多
关键词 layered backfill specimen (LBS) split Hopkinson pressure bar (SHPB) dynamic mechanical properties damage characteristic failure criterion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部