Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropan...The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropanol,n-butanol,toluene,dichloromethane,chloroform,tetrachloromethane,1,2-dichloroethane,acetone,ethyl acetate,acetonitrile,N-methylpyrrolidone(NMP),N,Ndimethylformamide dimethyl sulfoxide(DMF),dimethyl sulfoxide(DMSO).The solubility of TCDNB could be increased with increasing temperature in fifteen mono-solvents.TCDNB solubility is in the following order at 298.15 K:NMP>DMF>DMSO>toluene>acetone>ethyl acetate>dichloromethane>1,2-dich loroethane>chloroform>acetonitrile>tetrachloromethane>methanol>ethanol>n-butanol>isopropanol.The KAT-LSER model was used to investigate the solvent effect,which revealed that the hydrogen bond acidity of solvents has a greater effect on TCDNB solubility.The van't Hoff model,the modified Apelblat model,theλh model,and the non-random two liquid(NRTL)model were used to correlate the solubility of TCDNB.The calculated solubility data agreed well with the experimental data,and the modified Apelblat model fit best.Furthermore,the van't Hoff and Gibbs equations were also used to calculate the dissolution thermodynamic properties of TCDNB in various solvents.TCDNB dissolution could be an enthalpy-driven,non-spontaneous,and endothermic process in fifteen mono-solvents.The determination and fitting solubility of TCDNB,as well as the calculation of its thermodynamic properties,would be critical in the purification and crystallization of its preparation process research.展开更多
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutio...The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.展开更多
Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compou...Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO<sub>3</sub> (0.37) and AgTaO<sub>3</sub> (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature.展开更多
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c...For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.展开更多
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil...To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.展开更多
Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperature...Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.展开更多
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all...The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.展开更多
Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr...Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.展开更多
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t...Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.展开更多
The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f...The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.展开更多
We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notabl...We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).展开更多
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the ...Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental展开更多
The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes o...The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes of structure for these heterogeneous polymers.In the present article,recent progresses in the studies on dynamic rheology for heterogeneous polymer systems including polymeric composites filled with inorganic particles,thermo-oxidized polyolefins,phase- separated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed,mainly depending on the results by the authors' group.By means of rheological measurements,not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained,the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.展开更多
A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimo...A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.展开更多
The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of...The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.展开更多
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ...In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases.展开更多
The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The ...The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.展开更多
To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy...To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively.展开更多
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
文摘The solubility of 2,3,4-trichloro-1,5-dinitrobenzene(TCDNB) was measured by a laser dynamic method over the temperature range from 278.15 K to 323.15 K under 0.1 MPa in fifteen mono-solvents(methanol,ethanol,isopropanol,n-butanol,toluene,dichloromethane,chloroform,tetrachloromethane,1,2-dichloroethane,acetone,ethyl acetate,acetonitrile,N-methylpyrrolidone(NMP),N,Ndimethylformamide dimethyl sulfoxide(DMF),dimethyl sulfoxide(DMSO).The solubility of TCDNB could be increased with increasing temperature in fifteen mono-solvents.TCDNB solubility is in the following order at 298.15 K:NMP>DMF>DMSO>toluene>acetone>ethyl acetate>dichloromethane>1,2-dich loroethane>chloroform>acetonitrile>tetrachloromethane>methanol>ethanol>n-butanol>isopropanol.The KAT-LSER model was used to investigate the solvent effect,which revealed that the hydrogen bond acidity of solvents has a greater effect on TCDNB solubility.The van't Hoff model,the modified Apelblat model,theλh model,and the non-random two liquid(NRTL)model were used to correlate the solubility of TCDNB.The calculated solubility data agreed well with the experimental data,and the modified Apelblat model fit best.Furthermore,the van't Hoff and Gibbs equations were also used to calculate the dissolution thermodynamic properties of TCDNB in various solvents.TCDNB dissolution could be an enthalpy-driven,non-spontaneous,and endothermic process in fifteen mono-solvents.The determination and fitting solubility of TCDNB,as well as the calculation of its thermodynamic properties,would be critical in the purification and crystallization of its preparation process research.
基金Project supported by the National Natural Science Foundation of China(No.12072240)。
文摘The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem.These solutions can be reduced to the ones of an elastodynamic problem.Based on the effective medium method,these closedform solutions can be used to establish the self-consistent equations about the frequencydependent effective parameters,which can be numerically solved by iteration.Theoretical predictions are compared with the experimental results,and good agreement can be found.Furthermore,the analyses on the effects of microstructure and wavelength on the effective properties,resonance frequencies,and attenuation are also presented,which may provide some guidance for the microstructure design and analysis of piezoelectric composites.
文摘Based on the density functional theory within the local density approximation (LDA), we studied the electronic, elastic, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> compounds under pressure. The elastic constants, optic and static dielectric constants, born effective charges, and dynamic properties of AgNbO<sub>3</sub> and AgTaO<sub>3</sub> in cubic phase were studied as pressure dependences with the ab initio method. For these compounds, we have also calculated the bulk modulus, Young’s modulus, shear modulus, Vickers hardness, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature from the obtained elastic constants. In addition, the brittleness and ductility properties of these compounds were estimated from Poisson’s ratio and Pugh’s rule (G/B). Our calculated values also show that AgNbO<sub>3</sub> (0.37) and AgTaO<sub>3</sub> (0.39) behave as ductile materials and steer away from brittleness by increasing pressure. The calculated values of Vicker hardness for both compounds indicate that they are soft materials. The results show that band gaps, elastic constants, elastic modules, and dynamic properties for both compounds are sensitive to pressure changes. We have also made some comparisons with related experimental and theoretical data that is available in the literature.
基金Project(2013YQ17046310)supported by the National Key Scientific Instrument and Equipment Development Project of ChinaProject(2013M542138)supported by China Postdoctoral Science FoundationProjects(20130162110010,20130162120012)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(14JJ5015)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(HPCM-2013-03)supported by the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.
基金Project(51205302)supported by the National Natural Science Foundation of ChinaProject(2013JM7017)supported by the Natural Science Basic Research Plan in Shanxi Province of ChinaProject(K5051304006)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the EAM potential, a molecular dynamics study on the tensile properties of ultrathin nickel nanowires in the (100〉 orientation with diameters of 3.94, 4.95 and 5.99 nm was presented at different temperatures and strain rates. The temperature and strain rate dependences of tensile properties were investigated. The simulation results show that the elastic modulus and the yield strength are gradually decreasing with the increase of temperature, while with the increase of the strain rate, the stress--strain curves fluctuate more intensely and the ultrathin nickel nanowires rupture at one smaller and smaller strain. At an ideal temperature of 0.01 K, the yield strength of the nanowires drops rapidly with the increase of strain rate, and at other temperatures the strain rate has a little influence on the elastic modulus and the yield strength. Finally, the effects of size on the tensile properties of ultrathin nickel nanowires were briefly discussed.
基金supported by the National Natural Science Foundation of China(Nos.52271107 and 52205392)the Natural Science Foundation of Shandong Province(No.ZR2021ME241)the Bintech-IMR R&D Program(No.GYY-JSBU-2022-012).
文摘The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.
文摘Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.
基金Supported by National Natural Science Foundation of China (Grant No.52275178)Fujian industry university cooperation project (Grant No.2020H6025)。
文摘Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2401703)the National Natural Science Foundation of China(Grant Nos.52177005 and 51871234)the China Postdoctoral Science Foundation(Grant No.2022T150691)。
文摘The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.
基金supported by the Natural Science Foundation of Shandong Province for Major Basic Research under Grant No.ZR2023ZD09the National Natural Science Foundation of China under Grant Nos.12174327,11974302,and 92270104.
文摘We employ advanced first principles methodology,merging self-consistent phonon theory and the Boltzmann transport equation,to comprehensively explore the thermal transport and thermoelectric properties of KCdAs.Notably,the study accounts for the impact of quartic anharmonicity on phonon group velocities in the pursuit of lattice thermal conductivity and investigates 3ph and 4ph scattering processes on phonon lifetimes.Through various methodologies,including examining atomic vibrational modes and analyzing 3ph and 4ph scattering processes,the article unveils microphysical mechanisms contributing to the lowκL within KCdAs.Key features include significant anisotropy in Cd atoms,pronounced anharmonicity in K atoms,and relative vibrations in non-equivalent As atomic layers.Cd atoms,situated between As layers,exhibit rattling modes and strong lattice anharmonicity,contributing to the observed lowκL.Remarkably flat bands near the valence band maximum translate into high PF,aligning with ultralowκL for exceptional thermoelectric performance.Under optimal temperature and carrier concentration doping,outstanding ZT values are achieved:4.25(a(b)-axis,p-type,3×10^(19)cm^(−3),500 K),0.90(c-axis,p-type,5×10^(20)cm^(−3),700 K),1.61(a(b)-axis,n-type,2×10^(18)cm^(−3),700 K),and 3.06(c-axis,n-type,9×10^(17)cm^(−3),700 K).
文摘Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental
基金This work was supported by the National Natural Science Foundation for Distinguished Young Scholars(No.50125312)Key Program of National Science Foundation of China(No.50133020)National Natural Science Foundation of China(No.50373037)
文摘The dynamic rheological measurements have been a preferred approach to the characterization of the structure and properties for multi-component or multi-phase polymer systems,due to its sensitive response to changes of structure for these heterogeneous polymers.In the present article,recent progresses in the studies on dynamic rheology for heterogeneous polymer systems including polymeric composites filled with inorganic particles,thermo-oxidized polyolefins,phase- separated polymeric blends and functional polymers with the scaling and percolation behavior are reviewed,mainly depending on the results by the authors' group.By means of rheological measurements,not only some new fingerprints responsible for the evolution of morphology and structure concerning these polymer systems are obtained,the corresponding results are also significant for the design and preparation of novel polymer-based composites and functional materials.
基金supported by the China–Korea Joint Research Program of Ministry of Science and Technology of China (No. 2012DFG51540)
文摘A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.
基金This project is supported by Science Technology Development Foundation of Shanghai(No.0lJCl400l)+1 种基金Scientific Foundation of Hebei University of ScienceTechnology (No.XZ9906)
文摘The variation of casting hot spot with proceeding of solidification andcomponents of casting-mold system is studied by the technique of numerical simulation ofsolidification. The result shows that the thickest part of casting is not exactly the last part ofsolidification in the casting, while the last part of solidification is not exactly casting hot spotat the early stage of solidification. The location, size, shape and number of casting hot spotchange with geomitric, physical and technological factors of the casting-mold system such asthickness of the casting secondary wall and with the passage of time in the course of thesolidification. The former is known as the systematic property of hot spot and the latter, dynamicproperty. Only when the properties of hot spot are grasped completely and accurately, can it be fedmore effectively. By doing so, not only sound castings can be obtained, but also riser efficiencycan be improved.
基金Project(51304241)supported by the Youth Project of National Natural Science Foundation of ChinaProject(2014M552164)supported by Chinese Postdoctoral Science FoundationProject(20130162120015)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases.
基金Project supported by the Ministry of Science and Higher Education of Poland(Nos.04/43/DSPB/0085and 02/21/DSPB/3464)
文摘The paper is devoted to mathematical modelling of static and dynamic stability of a simply supported three-layered beam with a metal foam core. Mechanical properties of the core vary along the vertical direction. The field of displacements is for- mulated using the classical broken line hypothesis and the proposed nonlinear hypothesis that generalizes the classical one. Using both hypotheses, the strains are determined as well as the stresses of each layer. The kinetic energy, the elastic strain energy, and the work of load are also determined. The system of equations of motion is derived using Hamilton's principle. Finally, the system of three equations is reduced to one equation of motion, in particular, the Mathieu equation. The Bubnov-Galerkin method is used to solve the system of equations of motion, and the Runge-Kutta method is used to solve the second-order differential equation. Numerical calculations are done for the chosen family of beams. The critical loads, unstable regions, angular frequencies of the beam, and the static and dynamic equilibrium paths are calculated analytically and verified numerically. The results of this study are presented in the forms of figures and tables.
基金Project(2012BAC09B02)supported by the 12th Five-Year Key Programs for Science and Technology Development of ChinaProject(2016zzts444)supported by the Financial Support from the Fundament Research Funds for the Central Universities of Central South University,China
文摘To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively.