Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kun...Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.展开更多
Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,20...Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).展开更多
The Helegangnaren feldspar granite exposed in the eastern part of East Kunlun, is characterized by high concentrations of SiO2 and alkaline, low abundances of Fe, Mg and Ca, metaluminous-weak peraluminous. Trace eleme...The Helegangnaren feldspar granite exposed in the eastern part of East Kunlun, is characterized by high concentrations of SiO2 and alkaline, low abundances of Fe, Mg and Ca, metaluminous-weak peraluminous. Trace elements analysis shows that the granite is depleted extremely in Ba, Sr and Eu, and rich in some large-ion lithophile elements and high field strength elements. Besides, the granite has high Ga contents, the values of 104(Ga/AI) vary from 2.50 to 2.77, which is mainly greater than the lower limit of A-type granites (2.6), and is higher than the I- and S- type granites' average (2.1 and 2.28, respectively). Rare earth element (REE) is characterized by relatively high fractionations of light REE (LREE) and heavy REE (HREE) (LREE/HREE=9.3-13.60, (La/Yb)N=10.92-18.02), pronounced negative Eu anomalies (JEn=0.08-0.13), and exhibits right- dipping gull pattern. Major elements, rare elements and trace elements features show the granite is ascribed to A-type granite and A2 subtype in tectonic genetic type. They are plotted into post-collision or within-plate area in a variety of tectonic discriminations. Geological and geochemical data comprehensively suggest that the granite is formed in a post-collision extensive tectonic setting. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields a weighted mean age of 425 Ma, belonging to Middle Silurian, which is similar to the age of the post- collision geological events in the region. The differences of magmatic rocks in formation age, rocks assemblage and rocks series systematically indicate that the regional tectonic stress regime in the East Kunlun orogenic belt experienced a major transformation from compress to extension in Middle Silurianin, and the Helegangnaren feldspar granite intruded in the early stage of tectonic transformation.展开更多
A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered ep...A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.展开更多
The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area, which are in the eastern part of the East Kunlun Orogenic Belt. It outcrops as tectonic slices intruding tectonically in the Paleopr...The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area, which are in the eastern part of the East Kunlun Orogenic Belt. It outcrops as tectonic slices intruding tectonically in the Paleoproterozoic Baishahe Group and the Paleozoic Nachitai Group. The Kekekete mafic and ultramafic rocks is located near the central fault in East Kunlun and lithologically mainly consists of serpentinite, augite peridotite, and gabbro. The LA-ICP-MS zircon U-Pb age of the gabbro is 501±7 Ma, indicating that Kekekete mafic-ultramafic rocks formed in the Middle Cambrian. This rock assemblage is relatively poor in SiO2 and (Na20+K20) but rich in MgO and SFeO. The chondrite-normalized REE patterns of the gabbro dip slightly to the right; the primitive mantle and MORB-normalized spidergrams of trace elements show enrichment of large-ion lithophile elements (Cs, Rb, Ba, etc.) and no differentiation of high field strength elements. The general dominance of E- MORB features and the geochemical characteristics of OIB suggest that the Kekekete mafic- ultramafic rocks formed in an initial oceanic basin with slightly enriched mantle being featured by varying degrees of mixing of N-MORB depleted mantle and a similar-OIB-type source. From a comprehensive study of the previous data, the author believes that the tectonic history of the East Kunlun region was controlled by a geodynamic system of rifting and extension in the late stages of the Neoproterozoic to early stages of the Early Paleozoic and this formed the paleo-oceanic basin or rift system now represented by the ophiolites along the central fault in East Kunlun, the Kekekete mafic- ultramafic rocks and Delisitan ophiolite.展开更多
U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O conten...U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O contents, low in P_2O_5 and TiO_2 contents, depleted in Ba, Sr, P, Ti and enriched in U, Hf, Zr, showing features of I–type granite. The zircon εHf(t) values of the Early Triassic Jiamuge'er rhyolite porphyry(252±3 Ma) are positive(+1.6 to +12.1), suggesting a juvenile crustal source mixing with little old crustal component, and the zircon εHf(t) values of the Middle Triassic Manzhang'gang granodiorite(244±3 Ma) and Dehailong diorite(237±3 Ma) are predominately negative(-8.4 to +1.0), indicating an older crustal source. In comparison, the zircon εHf(t) values of the Late Triassic syenogranites from Suigen'ergang(234±2Ma), Ge'ermugang(233±2 Ma) and Yue'ergen(232±3 Ma) plutons vary from-3.8 to +5.0, suggesting a crust-mantle mixing source. From Early–Middle Triassic(252–237 Ma) to Late Triassic(234–232 Ma), the geochemical characteristics of these rocks show the change from a subduction–collision setting to a post-collision or within-plate setting. By comparing of these new age data with 77 zircon U–Pb ages of igneous rocks of the eastern part of East Kunlun orogen from published literatures, we conclude that the igneous rocks of Elashan Mountain and these of the eastern part of East Kunlun Orogen belong to one magmatic belt. All these data indicate that the Triassic magmatic events of the eastern part of East Kunlun Orogen can be divided into three stages: 252–238 Ma, 238–226 Ma and 226–212 Ma. Statistically, the average εHf(t) values of the threestage igneous rocks show a tendency, from the old to young, from-0.75±0.25 to lower-2.65±0.52 and then to-1.22±0.25, respectively, which reveal the change of their sources. These characteristics can be explained as a crust-mantle mixing source generated in a subductional stage, mainly crust source in a syn–collisional stage and a crust-mantle mixing source(lower crust with mantle-derived underplating magma) in a post-collisional stage. The identification of these three magmatic events in the Elashan Mountain, including all the eastern part of East Kunlun Orogen, provides new evidence for better understanding of the tectonic evolution of the northward subduction and closure of the Paleo-Tethyan(252–238 Ma), the collision of the Songpan–Ganzi block with the southern margin of Qaidam block(238–226 Ma), and the post–collisional setting(226–212 Ma) during the Early Mesozoic period.展开更多
The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–P...The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–Pb dating suggests that the granodiorite and mafic microgranular enclaves(MMEs) crystallized 246.61±0.62 and 245.45±0.9 Ma ago, respectively. Granodiorite, porphyritic diorite, and MMEs are metaluminous and medium-K calk-alkaline series, with island-arc magma features, such as LILE enrichment and HFSE depletion. The porphyritic diorite has high Cr(13.50 ppm to 59.01 ppm), Ni(228.53 ppm to 261.29 ppm), and Mg~#(46–54). Granodiorite and porphyritic diorite have similar mineral compositions and evolved major and trace elements contents, particularly Cr and Ni, both of which are significantly higher than that in granites of the same period. The crystallization age of MMEs is close to that of granodiorite, and their major and trace elements contents are in-between porphyritic diorite and granodiorite. The results suggest that the original mafic magma, which was the product of mantle melting by subduction process, intruded into the lower crust(Kuhai Rock Group), resulting in the formation of granodiorite. Countinous intrusion of mafic magma into the unconsolidated granodiorite formed MMEs and porphyritic diorite. The granodiorite reformed by late-stage strike-slip faulting tectonic event indicates that the strike-slip fault of Middle Kunlun and the collision of the Bayanhar block with East Kunlun were later than 246 Ma. Therefore, the formation of the QSG not only indicates the critical period of evolution of East Kunlun but also represents the tectonic transition from oceanic crust subduction to slab breaking.展开更多
Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexis...Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexistence of post-collisional magmatic activity and high-temperature metamorphism is rare.In this contribution, a lithological assemblage composing of diverse magmatic rocks deriving from distinct magma sources and coeval high-temperature metamorphism was identified in eastern Kunlun.Petrography, ages, mineral chemistry and whole-rock geochemistry demonstrated that those intimately coexistent diverse rocks were genetically related to post-collisional extension. The garnet-bearing mafic granulites in Jinshuikou area interior of the East Kunlun Orogenic Belt are mainly composed of garnet,orthopyroxene, and plagioclase, with peak metamorphic P–T conditions of ~ 701–756 ℃and 5.6–7.0 kbar,representing a granulite-facies metamorphism at 409.7 ± 1.7 Ma. The diverse contemporaneous magmatic rocks including hornblendites, gabbros and granites yield zircon U–Pb ages of 408.6 ± 2.5 Ma,413.4 ± 4.6 Ma, and 387–407 Ma, respectively. The hornblendites show N-MORB-like REE patterns with(La/Sm)Nvalues of 0.85–0.94. They have positive zircon εHf(t) values of 0.1–4.9 and whole-rock εNd(t) values of 3.9–4.7 but relatively high(^(87)Sr/^(86)Sr)_(i)values of 0.7081 to 0.7088. These features demonstrate that the hornblendites derived from a depleted asthenospheric mantle source with minor continental crustal materials in source. As for the gabbros, they exhibit arc-like elemental signatures, low zircon εHf(t) values(-4.3 to 2.5) and variable whole-rock εNd(t) values(-4.9 to 1.2) as well as high(^(87)Sr/86 Sr)ivalues(0.7068 to 0.7126), arguing for that they were originated from partial melting of heterogeneous lithospheric mantle anteriorly metasomatized by subducted-sediment released melts. Geochemistry of the granites defines their strongly peraluminous S-type signatures. Zircons from the granites yield a large range of εHf(t) values ranging from -30.8 to -5.1, while the whole-rock samples yield consistent(^(87)Sr/86 Sr)ivalues(0.7301 to 0.7342) and negative εNd(t) values(-10.1 to -12.4). These features indicate that the S-type granites could be generated by reworking of an ancient crust. Taken together, the penecontemporaneous magmatism and metamorphic event, demonstrated the early-middle Devonian transition from crustal thickening to extensional collapse. The post-collisional mantle-derived magmas serve as an essential driving force for the high-temperature granulite-facies metamorphism and anataxis of the crust associated with formation of S-type granite. This study not only constructs a more detail Proto-Tethys evolution process of the eastern Kunlun, but also sheds new light on better understanding the intimate relationship between magmatism and metamorphism during post-collisional extensional collapse.展开更多
Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Centr...Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.展开更多
The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly di...The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the widespread andesitic-rhyolitic Elashan volcanics(~232–225 Ma)in terms of their field occurrences and mineral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high ^(87)Sr/^(86)Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent protracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to postcollisional extension occurred at about 220 Ma.展开更多
The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well...The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.展开更多
1 Introduction East Kunlun orogen(EKO)stretching more than 1000km in E-W extension is located in the western segment of Central Orogen Belt(COB),China(Xu et al.,2006,Li et al.,2014).There outcropped Cambrian ophiolites
The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zirco...The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zircon U-Pb-Hf isotopes and whole-rock geochemistry to trace the petrogenesis and tectonic settings of the moyite and monzogranite from the Qimantag Alananshan,East Kunlun.The moyite and monzogranite are silicic(SiO_(2-)~69.9-76.41%),highly alkali(Na_(2)O+K_(2)O~7.29 to8.96 wt.%),with Mg^(#)about 10.4-30.34,indicative of a high-K calc-alkaline rock series.The rare earth element patterns diagram is right-leaning,with a negative Eu anomaly(δEu=0.31-0.68).They are enriched in Rb,K,and light rare earth elements but depleted in Nb,Ta,and Ti,with abundant amphibole,typical of I-type granites.U-Pb on zircon constrained the emplacement of the moyite at 223.9±2.6 Ma and monzogranite at 226.9±2.9 Ma.TheεHf(t)values range from-2.8 to+0.1 except for one outlier value of-7.0,corresponding two-stage model age of 1249-1437 Ma.Our combined geochemical and isotopic results indicate that the moyite and monzogranite were derived from partial melting of the lower thicken crust with the contribution from the older basement materials.These rocks formed in a post-collision setting that is transitional between compressive collision and extension orogeny.展开更多
Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understand...Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains展开更多
The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,...The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,1996,2009).The East Kunlun orogenic belt(EKOB)is bounded by Altyn Tagh Fault in the west and Wenquan Fault in the east,bounded by the south margin of Qaidam展开更多
The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary envi...The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing.展开更多
The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary...The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera- logy , microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature (151.7℃ -205.8 ℃), low salinity(2.06wt% - 4.94wt%NaCl), low density (0.86 -0.92 g/cm^( 3)) and shallow formation (1.5 -3.0 km) is a hydrothermal solution of NaCl-H_(2)O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low- temperature hydrothermal vein deposit.展开更多
The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest S...The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest Sichuan. A number of geological field investigations, typical micro topography DGPS measurements and sample dating show that the earthquake activity of the East Kunlun fault zone extends to the north boundary of Zoige basin, a segment known as the Luocha segment of Tazang fault. In the satellite image, the segment is seen clearly as gray and yellow strips. The earthquake deformation zone mainly features fault scarp, valleys on the slope, offset gullies and terraces, linear distribution of plants, waterfall, fault spring, fault sag pond, and landslide, collapse and talus associated with surface rupturing. These phenomena are distributed intermittently along the re-existing fault and form a ~50km-long inverse L-shaped deformation zone. Fault activities caused left-lateral offset of gullies and terraces, with horizontal displacement concentrated at 5.5m^6m, 18m~23m, 68m~75m, and 200m~220m, respectively. The recent earthquake occurred between 340±30~500±30BP. The macro epicenter is located 5km~7km northwest of Benduo village, with magnitude of MW7.3~7.4, maximum coseismic displacement of 6m, horizontal displacement 5.5m~6m and vertical displacement 0.2m~0.5m, being in a proportion of 5∶1~10∶1. These phenomena show that the Tazang fault is the causative fault of this earthquake. The fault is a Holocene active fault and was dominated recently by left-lateral movement with a small amount of thrust component under compressive shear stress. This characteristic is similar to the movement in other segments of the East Kunlun fault zone. The results of this study support the "continental escape" model.展开更多
The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Bas...The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Based on three trenches, four Holocene palaeo-earthquake events are identified along the Maqu fault. The latest palaeo-earthquake event is (1730±50) ~ (1802±52) a BP, the second is (3736±57) ~ (4641±60) a BP, the third is (8590±70) a BP, and the earliest is (12200±1700) ka BP. The time of the first and second palaeo-earthquake events is more reliable than that of the third and last ones. As a result, the recurrence interval of the palaeo-earthquakes on the easternmost segment of the East Kunlun active fault is approximately 2400 a, and the palaeo-earthquake elapsed time is (1730±50) ~ (1802±52) a BP.展开更多
基金financially supported by the National Natural Science Foundation of China(41272052)the projects(1212011120158 and 12120114080101)of the China Geological Survey。
文摘Xiarihamu deposit is the only super-large Ni-Co deposit found in East Kunlun orogenic belt(EKOB)until present.Shitoukengde(STKD)intrusion is considered to have the potential to become a large Ni-Co deposit in East Kunlun.In order to discuss the metallogenic potential,this study present petrographical,geochemical data,and zircon U-Pb dating for the STKD intrusion.The STKD intrusion is hosted within mafic-ultramafic rocks which contain peridotite,pyroxenite and gabbro,and mainly intruded into the marble of the Paleoproterozoic Jinshuikou Group.Harzburgite and orthopyroxenite are the main country rocks for the Cu-Ni sulfide mineralization.Combine with the positiveε_(Hf)(t)values(+1.1 to+8.6)of zircons,the enrichment of LILEs,depletion of HFSEs,and lower Ce/Pb ratios of whole rocks indicate that the parental magma was originated from the depleted asthenospheric mantle and experienced 5%–15%crustal contamination.Troctolite formed during the Early Devonian and it has weighted mean^(206)Pb/^(238)U age of 412 Ma.Regional background information has indicated that the post-collisional extension setting has already existed during the Early Devonian,leading to the formation of STKD intrusion and Cu-Ni sulfide mineralization.STKD intrusion may have the potential to be one economic Cu-Ni sulfide deposit but seems unlikely to be a super-large one.
基金supported by Qinghai Provincial Association for Science and Technology Youth Science and Technology Talent Support Project(Grant No.2023QHSKXRCTJ47)Exploration Foundation of Qinghai Province(Grant No.2023085029ky004)。
文摘Introduction The East Kunlun Orogenic Belt is located in the northeastern part of the Qinghai–Tibet Plateau(Li et al.,2007),stretching from the East Kunlun to the Elashan area in an east–west direction(Guo et al.,2018).It is an important part of the Central Orogenic Belt(Xiong et al.,2023).It is considered one of the important gold mineralization regions in the Tethys tectonic domain(Norbu et al.,2023)and an essential potential base for mineral resources in China.Wulonggou and Gouli gold mines have been discovered successively,earning the reputation of the"Golden Belt of Qinghai Province"(Feng et al.,2004;He et al.,2023).
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41172186, 40972136 and 40572121)Special Fund for Basic Scientific Research of Central Colleges, Chang’an University, China (Grant Nos.CHD2011TD020, CHD2009JC070, CHD2009JC053 and CHD2009JC046)the Commonweal Geological Survey,the Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No.200801)
文摘The Helegangnaren feldspar granite exposed in the eastern part of East Kunlun, is characterized by high concentrations of SiO2 and alkaline, low abundances of Fe, Mg and Ca, metaluminous-weak peraluminous. Trace elements analysis shows that the granite is depleted extremely in Ba, Sr and Eu, and rich in some large-ion lithophile elements and high field strength elements. Besides, the granite has high Ga contents, the values of 104(Ga/AI) vary from 2.50 to 2.77, which is mainly greater than the lower limit of A-type granites (2.6), and is higher than the I- and S- type granites' average (2.1 and 2.28, respectively). Rare earth element (REE) is characterized by relatively high fractionations of light REE (LREE) and heavy REE (HREE) (LREE/HREE=9.3-13.60, (La/Yb)N=10.92-18.02), pronounced negative Eu anomalies (JEn=0.08-0.13), and exhibits right- dipping gull pattern. Major elements, rare elements and trace elements features show the granite is ascribed to A-type granite and A2 subtype in tectonic genetic type. They are plotted into post-collision or within-plate area in a variety of tectonic discriminations. Geological and geochemical data comprehensively suggest that the granite is formed in a post-collision extensive tectonic setting. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields a weighted mean age of 425 Ma, belonging to Middle Silurian, which is similar to the age of the post- collision geological events in the region. The differences of magmatic rocks in formation age, rocks assemblage and rocks series systematically indicate that the regional tectonic stress regime in the East Kunlun orogenic belt experienced a major transformation from compress to extension in Middle Silurianin, and the Helegangnaren feldspar granite intruded in the early stage of tectonic transformation.
文摘A high-angle ductile thrusting deformation with top-to-the-north movement penetratively developed in the Proterozoic-Early Paleozoic metamorphic rocks along the Central East Kunlun belt. The deformed rocks suffered epidote-amphibolite facies metamorphism. On the basis of our previous study, we present more data in this paper to further support that the ducdle thrust deformation occurred in the later Caledonian and more detailed information about the deformation. A zircon U-Pb concordant age of 446±2.2 Ma of a deformed granodiorite in the ductile thrust zone was obtained and can be interpreted as the lower limit of the deformation. A syntectonically crystallized and also strongly deformed hornblende Ar/ Ar dating gives an Ar/Ar plateau age of 426.5±3.8 Ma, which represents the deformation age. A strongly orientated muscovite gives an Ar/Ar plateau age of 408±1.6Ma, representing the cooling age after the peak temperature, constraining the upper limit of the ductile thrust deformation. This ductile thrust deformation can be interpreted as the result of the closing of the Central East Kunlun archipelago ocean. To the north, Ar/Ar plateau ages of 382.9±0.2 Ma and 386.8±0.8 Ma of muscovite in the deformed Xiaomiao Group represent the uplift cooling ages of deeper rocks after the thrusting movement. The original thrusting foliation has a low angle. A rotation model was put forward to explain the development of the foliation from the original low-angle to present high-angle dipping.
基金supported by the National Science Foundation of China (Grant No., 41172186, 40972136, 40572121)the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (Grant Nos. CHD2011TD020, 2013G1271091, 2013G1271092)the Commonweal Geological Survey, the Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No., 200801)
文摘The Kekekete mafic-ultramafic rocks are exposed in the Kekesha-Kekekete-Dawate area, which are in the eastern part of the East Kunlun Orogenic Belt. It outcrops as tectonic slices intruding tectonically in the Paleoproterozoic Baishahe Group and the Paleozoic Nachitai Group. The Kekekete mafic and ultramafic rocks is located near the central fault in East Kunlun and lithologically mainly consists of serpentinite, augite peridotite, and gabbro. The LA-ICP-MS zircon U-Pb age of the gabbro is 501±7 Ma, indicating that Kekekete mafic-ultramafic rocks formed in the Middle Cambrian. This rock assemblage is relatively poor in SiO2 and (Na20+K20) but rich in MgO and SFeO. The chondrite-normalized REE patterns of the gabbro dip slightly to the right; the primitive mantle and MORB-normalized spidergrams of trace elements show enrichment of large-ion lithophile elements (Cs, Rb, Ba, etc.) and no differentiation of high field strength elements. The general dominance of E- MORB features and the geochemical characteristics of OIB suggest that the Kekekete mafic- ultramafic rocks formed in an initial oceanic basin with slightly enriched mantle being featured by varying degrees of mixing of N-MORB depleted mantle and a similar-OIB-type source. From a comprehensive study of the previous data, the author believes that the tectonic history of the East Kunlun region was controlled by a geodynamic system of rifting and extension in the late stages of the Neoproterozoic to early stages of the Early Paleozoic and this formed the paleo-oceanic basin or rift system now represented by the ophiolites along the central fault in East Kunlun, the Kekekete mafic- ultramafic rocks and Delisitan ophiolite.
基金supported by China Geological Survey(Nos.12120113094000,1212010811033 and 12120113093600)National Natural Science Foundation of China(Nos.41172062 and 41572052)
文摘U–Pb analysis of zircons from igneous rocks in the Elashan Mountain, easternmost segment of the East Kunlun Orogen yielded 252–232 Ma. Geochemically, these rocks are mainly high in SiO_2, K_2O and K_2O+Na_2O contents, low in P_2O_5 and TiO_2 contents, depleted in Ba, Sr, P, Ti and enriched in U, Hf, Zr, showing features of I–type granite. The zircon εHf(t) values of the Early Triassic Jiamuge'er rhyolite porphyry(252±3 Ma) are positive(+1.6 to +12.1), suggesting a juvenile crustal source mixing with little old crustal component, and the zircon εHf(t) values of the Middle Triassic Manzhang'gang granodiorite(244±3 Ma) and Dehailong diorite(237±3 Ma) are predominately negative(-8.4 to +1.0), indicating an older crustal source. In comparison, the zircon εHf(t) values of the Late Triassic syenogranites from Suigen'ergang(234±2Ma), Ge'ermugang(233±2 Ma) and Yue'ergen(232±3 Ma) plutons vary from-3.8 to +5.0, suggesting a crust-mantle mixing source. From Early–Middle Triassic(252–237 Ma) to Late Triassic(234–232 Ma), the geochemical characteristics of these rocks show the change from a subduction–collision setting to a post-collision or within-plate setting. By comparing of these new age data with 77 zircon U–Pb ages of igneous rocks of the eastern part of East Kunlun orogen from published literatures, we conclude that the igneous rocks of Elashan Mountain and these of the eastern part of East Kunlun Orogen belong to one magmatic belt. All these data indicate that the Triassic magmatic events of the eastern part of East Kunlun Orogen can be divided into three stages: 252–238 Ma, 238–226 Ma and 226–212 Ma. Statistically, the average εHf(t) values of the threestage igneous rocks show a tendency, from the old to young, from-0.75±0.25 to lower-2.65±0.52 and then to-1.22±0.25, respectively, which reveal the change of their sources. These characteristics can be explained as a crust-mantle mixing source generated in a subductional stage, mainly crust source in a syn–collisional stage and a crust-mantle mixing source(lower crust with mantle-derived underplating magma) in a post-collisional stage. The identification of these three magmatic events in the Elashan Mountain, including all the eastern part of East Kunlun Orogen, provides new evidence for better understanding of the tectonic evolution of the northward subduction and closure of the Paleo-Tethyan(252–238 Ma), the collision of the Songpan–Ganzi block with the southern margin of Qaidam block(238–226 Ma), and the post–collisional setting(226–212 Ma) during the Early Mesozoic period.
基金jointly supported by the National Science Foundation of China (Grant No.,41472191,41502191,41172186,40972136)the Special Fund for Basic Scientific Research of Central Colleages,Chang'an University (Grant Nos.310827161002,310827161006)the Commonweal Geological Survey,the Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No.,200801)
文摘The Qushi’ang granodiorite(QSG) is located at the central east of the ophiolitic melange belt in the East Kunlun Orogenic Belt(EKOB) in the northern margin of the Qinghai-Tibetan Plateau. LA-MC-ICP-MS zircon U–Pb dating suggests that the granodiorite and mafic microgranular enclaves(MMEs) crystallized 246.61±0.62 and 245.45±0.9 Ma ago, respectively. Granodiorite, porphyritic diorite, and MMEs are metaluminous and medium-K calk-alkaline series, with island-arc magma features, such as LILE enrichment and HFSE depletion. The porphyritic diorite has high Cr(13.50 ppm to 59.01 ppm), Ni(228.53 ppm to 261.29 ppm), and Mg~#(46–54). Granodiorite and porphyritic diorite have similar mineral compositions and evolved major and trace elements contents, particularly Cr and Ni, both of which are significantly higher than that in granites of the same period. The crystallization age of MMEs is close to that of granodiorite, and their major and trace elements contents are in-between porphyritic diorite and granodiorite. The results suggest that the original mafic magma, which was the product of mantle melting by subduction process, intruded into the lower crust(Kuhai Rock Group), resulting in the formation of granodiorite. Countinous intrusion of mafic magma into the unconsolidated granodiorite formed MMEs and porphyritic diorite. The granodiorite reformed by late-stage strike-slip faulting tectonic event indicates that the strike-slip fault of Middle Kunlun and the collision of the Bayanhar block with East Kunlun were later than 246 Ma. Therefore, the formation of the QSG not only indicates the critical period of evolution of East Kunlun but also represents the tectonic transition from oceanic crust subduction to slab breaking.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019B00414)Open Fund of the Key Laboratory of Marine Geology and Environment Chinese Academy of Sciences(No.MGE2020KG03)the PHD early development program of East China University of Technology(No.DHBK2018035)。
文摘Lithosphere extension and upwelling of asthenosphere at post-collisional stage of an orogenic cycle generally induce diverse magmatism and/or associated high-temperature metamorphism. Nevertheless, the intimate coexistence of post-collisional magmatic activity and high-temperature metamorphism is rare.In this contribution, a lithological assemblage composing of diverse magmatic rocks deriving from distinct magma sources and coeval high-temperature metamorphism was identified in eastern Kunlun.Petrography, ages, mineral chemistry and whole-rock geochemistry demonstrated that those intimately coexistent diverse rocks were genetically related to post-collisional extension. The garnet-bearing mafic granulites in Jinshuikou area interior of the East Kunlun Orogenic Belt are mainly composed of garnet,orthopyroxene, and plagioclase, with peak metamorphic P–T conditions of ~ 701–756 ℃and 5.6–7.0 kbar,representing a granulite-facies metamorphism at 409.7 ± 1.7 Ma. The diverse contemporaneous magmatic rocks including hornblendites, gabbros and granites yield zircon U–Pb ages of 408.6 ± 2.5 Ma,413.4 ± 4.6 Ma, and 387–407 Ma, respectively. The hornblendites show N-MORB-like REE patterns with(La/Sm)Nvalues of 0.85–0.94. They have positive zircon εHf(t) values of 0.1–4.9 and whole-rock εNd(t) values of 3.9–4.7 but relatively high(^(87)Sr/^(86)Sr)_(i)values of 0.7081 to 0.7088. These features demonstrate that the hornblendites derived from a depleted asthenospheric mantle source with minor continental crustal materials in source. As for the gabbros, they exhibit arc-like elemental signatures, low zircon εHf(t) values(-4.3 to 2.5) and variable whole-rock εNd(t) values(-4.9 to 1.2) as well as high(^(87)Sr/86 Sr)ivalues(0.7068 to 0.7126), arguing for that they were originated from partial melting of heterogeneous lithospheric mantle anteriorly metasomatized by subducted-sediment released melts. Geochemistry of the granites defines their strongly peraluminous S-type signatures. Zircons from the granites yield a large range of εHf(t) values ranging from -30.8 to -5.1, while the whole-rock samples yield consistent(^(87)Sr/86 Sr)ivalues(0.7301 to 0.7342) and negative εNd(t) values(-10.1 to -12.4). These features indicate that the S-type granites could be generated by reworking of an ancient crust. Taken together, the penecontemporaneous magmatism and metamorphic event, demonstrated the early-middle Devonian transition from crustal thickening to extensional collapse. The post-collisional mantle-derived magmas serve as an essential driving force for the high-temperature granulite-facies metamorphism and anataxis of the crust associated with formation of S-type granite. This study not only constructs a more detail Proto-Tethys evolution process of the eastern Kunlun, but also sheds new light on better understanding the intimate relationship between magmatism and metamorphism during post-collisional extensional collapse.
基金co-supported by the National Natural Science Foundation of China(grant No.41302070)the Fundamental Research Funds for the Central Universities (grants No.310827172004 and 310827173401)Geological Exploration Fund Project of Qinghai Province (grant No.2012209)
文摘Objective Eclogites are important indicators of ancient plate boundaries or paleosuture zones. Despite their great geological significance, very few investigations have been carried out in the Kunlun region. The Central East Kunlun fault zone was believed to be an Early Paleozoic suture zone, but there has been no reliable evidence for this, though studies on ophiolite, granite, and basic granulite indicate that the Early Paleozoic orogeny occurred in the East Kunlun. This work focused on the Dagele eclogites in Central East Kunlun to provide new constraints for the Central East Kunlun suture zone.
基金This work was mainly supported by National Natural Science Foundation of China(NNSF,Grant No.41803028)Natural Science Foundation of Shandong Province(NSFSP,Grant No.ZR2018BD020)to Fengli Shao+2 种基金Grant Nos.41802201,41630968 and 41688103 from NNSFGrant Nos.ZR2018BD012 and ZR2020QD044 from NSFSPGrant No.2019RZA02002 from soft science project of Shandong Province Key Research and Development Plan。
文摘The East Kunlun Orogenic Belt(EKOB),which is in the northern part of the Greater Tibetan Plateau,contains voluminous Late Triassic intermediate-felsic volcanic rocks.In the east end of the EKOB,we identified highly differentiated peralkaline-like Xiangride rhyolites(~209 Ma)that differ from the widespread andesitic-rhyolitic Elashan volcanics(~232–225 Ma)in terms of their field occurrences and mineral assemblages.The older,more common calc-alkaline felsic Elashan volcanics may have originated from partial melting of the underthrust Paleo-Tethys oceanic crust under amphibolite facies conditions associated with continental collision.The felsic Elashan volcanics and syn-collisional granitoids of the EKOB are different products of the same magmatic event related to continental collision.The Xiangride rhyolites are characterized by elevated abundances of high field strength elements,especially the very high Nb and Ta contents,the very low Ba,Sr,Eu,P,and Ti contents;and the variably high ^(87)Sr/^(86)Sr ratios(up to 0.96),exhibiting remarkable similarities to the characteristic peralkaline rhyolites.The primitive magmas parental to the Xiangride rhyolites were most likely alkali basaltic magmas that underwent protracted fractional crystallization with continental crust contamination.The rock associations from the early granitoids and calc-alkaline volcanic rocks to the late alkaline basaltic dikes and peralkaline-like rhyolites in the Triassic provide important information about the tectonic evolution of the EKOB from syn-collisional to post-collisional.We infer that the transition from collisional compression to postcollisional extension occurred at about 220 Ma.
文摘The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.
基金funded by the National Science Foundation of China (Grant Nos. 41502191, 41472191、41172186)
文摘1 Introduction East Kunlun orogen(EKO)stretching more than 1000km in E-W extension is located in the western segment of Central Orogen Belt(COB),China(Xu et al.,2006,Li et al.,2014).There outcropped Cambrian ophiolites
基金supported by the National Science Foundation of China (Grant No., 41472191, 41502191, 41172186, 40972136)the Special Fund for Basic Scientific Research of Central Colleages, Chang’an University (Grant Nos. 310827161002, 310827161006)+1 种基金the Commonweal Geological Surveythe Aluminum Corporation of China and the Land-Resources Department of Qinghai Province (Grant No., 200801)
文摘The East Kunlun Orogenic Belt(EKOB)in northeast margin of the Qinghai-Tibetan Plateau is an important part of the Central Orogenic System(COS).During the long-time geological evolution,complicated tectono
基金co-financed by the"Xinjiang Uygur Autonomous Region Central Government Returns the Price of Two Rights(K15-1-LQ06)"the National Natural Science Foundations of China(No.42101005)the Research Foundation of Education Department of Hunan Province for Excellent Young Scholars(No.19B097)。
文摘The Qimantag in the East Kunlun Orogenic Belt has widespread Triassic magmatic rocks that have received scant attention,with an unresolved issue relating to its petrogenesis and geodynamics.In this paper,we used zircon U-Pb-Hf isotopes and whole-rock geochemistry to trace the petrogenesis and tectonic settings of the moyite and monzogranite from the Qimantag Alananshan,East Kunlun.The moyite and monzogranite are silicic(SiO_(2-)~69.9-76.41%),highly alkali(Na_(2)O+K_(2)O~7.29 to8.96 wt.%),with Mg^(#)about 10.4-30.34,indicative of a high-K calc-alkaline rock series.The rare earth element patterns diagram is right-leaning,with a negative Eu anomaly(δEu=0.31-0.68).They are enriched in Rb,K,and light rare earth elements but depleted in Nb,Ta,and Ti,with abundant amphibole,typical of I-type granites.U-Pb on zircon constrained the emplacement of the moyite at 223.9±2.6 Ma and monzogranite at 226.9±2.9 Ma.TheεHf(t)values range from-2.8 to+0.1 except for one outlier value of-7.0,corresponding two-stage model age of 1249-1437 Ma.Our combined geochemical and isotopic results indicate that the moyite and monzogranite were derived from partial melting of the lower thicken crust with the contribution from the older basement materials.These rocks formed in a post-collision setting that is transitional between compressive collision and extension orogeny.
基金financially supported by the National Natural Science Foundation of China (grants No. 41402099 and No. 40972084)
文摘Objective The East Kunlun Orogenic belt constitutes the first marked change in the topographic reliefs north of the Qinghai-Tibet Plateau.The Cenozoic tectonic evolution of this orogenic belt is crucial for understanding the remote deformational effects of the Eurasian plate collision and the migration track at the northern margin of the plateau.However,when and how the uplift occurred remains
基金supported by National Natural Science Foundation of China(41072026,41272052)the China Geological Survey project(1212010918003,1212011120158)
文摘The East Kunlun located in the northern margin of the Qinghai-Xizang(Tibet)Plateau,is a composite orogenic belt which has underwent multi-stages tectonic evolution(e.g.Wang and Chen,1987;Jiang et al.,1992;Yang et al.,1996,2009).The East Kunlun orogenic belt(EKOB)is bounded by Altyn Tagh Fault in the west and Wenquan Fault in the east,bounded by the south margin of Qaidam
文摘The Changning Menglian belt is an important area of research on the evolution of the Paleo Tethys ocean structure,the belt can be solved such as the Changning Menglianbeltposition;sequencestratigraphy;sedimentary environment;nature and its tectonic evolution history and tectonic domain and Gut Tis relationship;therefore,the research on Chang Ning Menglian zone have a great significance to solve many problems of the Sanjiang fold belt in Tethys and Himalaya tectonic area.'Hot spring'is located in the west margin of the southern Changning Menglian belt,studying Yunnan Fengqing hot spring group'geological and petrology characteristics roundly and in depth,concluding the metamorphism and deformation characteristics,clarifying the metamorphism effect and its stages,understanding the association its combination with the Changning Menglian belt between,therefore it has the great significance to solve the geological evolution history in the Sanjiang area,especially the paleo Tethyan tectonic belt,as well as Gondwana and Eurasia boundaries and other major problem.Through collect and read the literature data,measurement of field section,geological investigation,research and Study on rock sheet indoor,rock composition test,electron probe testing system,summarize the geological characteristics and petrological characteristics of'hot springs group',and through the discussion of the geochemical characteristics of rocks,explore its rock assemblages,characteristics of original rock and analysis of metamorphism and deformation stages,to provide basic data for regional geological evolution.The study shows that the main lithology is biotite quartz schist,mica schist and epimetamorphic sandstone interspersed with a small amount of phyllonite,granulite,silicalite,carbonaceous slate and phyllitic cataclasite that contains some pressure breccia.The metamorphic mineral paragenetic assemblage of the representative rock is:M1 biotite(Bi)+plagioclase(Pl)+quartz(Q),and M2 muscovite(Mus)+quartz(Q).The protolith is felsic rock and sedimentary rock that belongs to argiloid.On the basis of comparison,the stratigraphic sequence of the protolith is consistent with the type section of Wenquan formation.Along with the subduction(Hercynian)-subduction(Indosinian)-orogenic(Yanshan Himalayan period)process of Changning Menglian belt,hot springs group experienced two stages of metamorphism and three stages of deformation,metamorphic temperature at400-500℃,the pressure is foucs on 0.3-0.62Gpa,and shown the retrograde metamorphism of the low greenschist facies.Geological age of hot springs formation is early Devonian(survey team of Yunnan District three units,1980),sedimentary environment is mainly shallow and semi deep sea,observed Bouma sequence in rock slice,therefore,the depositional environment may be fan or basin of sea,the sedimentary formations are mainly clastic rocksiliceous rock formation,the upper coal—contained formation.With the Changning Meng Lian ocean expansion,ocean island begin to develop,material deposition continuing,appearing volcano material,the protolith may contain volcano matter through studying the thin section.To the Late Permian,Crust of Changning Menglian ocean begin to subduct to the east of the Yangtze block,ocean basin began to close,but it still has formation here at this time,mainly shallow carbonate formation,with proceeding of subduction,in the low temperature groove(7Km deep),due to changes in temperature and pressurer,appearing metamorphism(M1)and deformation(D1)for the first time,the shear effect produced by deformation lead to some cleavage,occurring regional foliation S1,major metamorphic minerals formed in metamorphism is long flake biotite.The main metamorphic mineral assemblages are biotite(Bi)+feldspar(Pl)+quartz(Q).Subsequently,crustal uplift,depositional break,because the Changning Meng Lianyang has closed during the Indosinian period,Baoshan-Zhenkang block in the west and the Yangtze block in the east knocked each other.In the Indosinian,under the action of faults,the hot spring formation clipping and retracing,back to a position about1-2Km depth,the position is still belongs to the low temperature groove,and occurring axial cleavage in the core of the fold,namely S2.That is,the emergence of the second metamorphism(M2)and deformation(D2).The deformation is affected by the strong pressure,so the rock have dewatered,so the second metamorphic deformation process is affected by temperature(T),pressure(Ps)and fluid(C).The main metamorphic minerals in the second generation of metamorphism is Muscovite,while there have some of biotite formed in same period,find that the first phase of biotite parallel growth of rock slice,namely S1 parallel S2,and we can see incomplete metamorphism biotite,so the the Muscovite is formed by the first stage of metamorphism and metamorphic biotite.The main mineral of the second stage metamorphism is Muscovite(Mus)+quartz(Q) Then,the crust continues to rise,the sedimentary break continues.In the Jurassic Cretaceous start orogeny,namely Yanshan period intracontinental orogeny,occurred third deformation(D3),under extrusion shearing,S3 emergencing,after Yanshan intracontinental orogenic period,in Himalayan period there have large-scale nappe structure and differential uplift and faulting.So the third deformation(D3)strengthened,with weak metamorphism,sericite emergencing.
文摘The South Narimalahei area is located on the north side of the Middle Kunlun fault in the eastern section of the East Kunlun composite orogenic belt. The ore body is veined and controlled by structures and se- condary fissures, which occurs in the structural alteration fracture zone in the Late Triassic granodiorite. In this deposit, copper mineralization is closely related to silicification and sericification. The formation process of the deposit includes hydrothermal mineralization and supergene oxidation. In this paper, the fluid inclusion minera- logy , microscopic temperature measurement and stable isotope studies have been carried out for ore of the main mineralization stage. The results show that the primary gas-liquid two-phase inclusions and a small amount of single-liquid inclusions are mainly developed in the quartz in the main mineralization stage. The results of microscopic temperature measurement show that the ore-forming fluid which has low temperature (151.7℃ -205.8 ℃), low salinity(2.06wt% - 4.94wt%NaCl), low density (0.86 -0.92 g/cm^( 3)) and shallow formation (1.5 -3.0 km) is a hydrothermal solution of NaCl-H_(2)O system. Hydrogen and oxygen isotope results show that the ore-forming fluids mainly come from atmospheric precipitation, with a small amount of magmatic fluids participating. It is preliminarily determined that the South Narimalahei copper polymetallic deposit is a low- temperature hydrothermal vein deposit.
基金funded by the National 973 Project of China ( Grant No. 2008CB425701 )Basic Scientific Research Fund of Institute of Earthquake Science,CEA (No. 02092437)
文摘The East Kunlun fault zone is located in the northern margin of the Bayan Har block. The study of earthquake rupture behavior in the fault zone is of importance for understanding the future seismic risk in northwest Sichuan. A number of geological field investigations, typical micro topography DGPS measurements and sample dating show that the earthquake activity of the East Kunlun fault zone extends to the north boundary of Zoige basin, a segment known as the Luocha segment of Tazang fault. In the satellite image, the segment is seen clearly as gray and yellow strips. The earthquake deformation zone mainly features fault scarp, valleys on the slope, offset gullies and terraces, linear distribution of plants, waterfall, fault spring, fault sag pond, and landslide, collapse and talus associated with surface rupturing. These phenomena are distributed intermittently along the re-existing fault and form a ~50km-long inverse L-shaped deformation zone. Fault activities caused left-lateral offset of gullies and terraces, with horizontal displacement concentrated at 5.5m^6m, 18m~23m, 68m~75m, and 200m~220m, respectively. The recent earthquake occurred between 340±30~500±30BP. The macro epicenter is located 5km~7km northwest of Benduo village, with magnitude of MW7.3~7.4, maximum coseismic displacement of 6m, horizontal displacement 5.5m~6m and vertical displacement 0.2m~0.5m, being in a proportion of 5∶1~10∶1. These phenomena show that the Tazang fault is the causative fault of this earthquake. The fault is a Holocene active fault and was dominated recently by left-lateral movement with a small amount of thrust component under compressive shear stress. This characteristic is similar to the movement in other segments of the East Kunlun fault zone. The results of this study support the "continental escape" model.
基金The project wasjointlysupported bythefollow-up projectsof moderately strong earthquake prediction of the North-South earthquake zone of China Earthquake Administration,theJoint Earthquake Science Foundation of CEA (104073) and the National Natural science Foundation of China(40372086) .Contribution No.LC20060016 of Lanzhou Institute of Seismology of CEA
文摘The East Kunlun active fault is an important NWW-trending boundary fault on the northeastern margin of the Qinghai-Xizang (Tibet) Plateau. The Maqu fault is the easternmost segment of the East Kunlun active fault. Based on three trenches, four Holocene palaeo-earthquake events are identified along the Maqu fault. The latest palaeo-earthquake event is (1730±50) ~ (1802±52) a BP, the second is (3736±57) ~ (4641±60) a BP, the third is (8590±70) a BP, and the earliest is (12200±1700) ka BP. The time of the first and second palaeo-earthquake events is more reliable than that of the third and last ones. As a result, the recurrence interval of the palaeo-earthquakes on the easternmost segment of the East Kunlun active fault is approximately 2400 a, and the palaeo-earthquake elapsed time is (1730±50) ~ (1802±52) a BP.