This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slan...This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slant path. The propagation of GSM beams with edge dislocation through horizontal atmospheric turbulence can be treated as a special case through a slant one. The propagation properties of GSM beams with edge dislocation through slant atmospheric turbulence are studied, where the influence of edge dislocation parameters including the slope p and off-axis distance d on the spreading of GSM beams with edge dislocation in atmospheric turbulence is stressed. It shows that the spreading of the intensity profile of GSM beams with edge dislocation along a slant path is smaller than that along a horizontal path in the long-distance atmospheric propagation. The larger the slope |p| and the smaller the off-axis distance |d| are, the less the beam-width spreading and angular spread of GSM beams with edge dislocation are affected by turbulence. The CSM beams with edge dislocation is less affected by turbulence than that of GSM beams without edge dislocation. The results are illustrated numerically and their validity is interpreted physically.展开更多
The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic material...The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.展开更多
With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical ...With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.展开更多
Constrained by orbital configuration and spectrum sharing,non-geostationary orbit(NGEO)satellites may be interfered when they are in the beam range of geostationary orbit(GEO)satellite.However,it is difficult for NGEO...Constrained by orbital configuration and spectrum sharing,non-geostationary orbit(NGEO)satellites may be interfered when they are in the beam range of geostationary orbit(GEO)satellite.However,it is difficult for NGEO operators to determine the signal source.Herein,we propose a method to locate the GEO signal source and estimate beam features,including beam pointing azimuth,elevation,and beamwidth,by the beam edge positions.We transform this estimation problem into two optimization problems by minimizing the estimation error,and solve both of them through a multi-variable joint iteration method with acceptable computation complexity.Numerical results show that when NGEO satellites pass through the beam twice,the longitude estimation error is about 0.01 degree,and the estimation results will be more and more accurate as the number of passing times increases.Besides,the proposed method is also effective when there are kilometer-level errors in beam edge positions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.10874125)
文摘This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slant path. The propagation of GSM beams with edge dislocation through horizontal atmospheric turbulence can be treated as a special case through a slant one. The propagation properties of GSM beams with edge dislocation through slant atmospheric turbulence are studied, where the influence of edge dislocation parameters including the slope p and off-axis distance d on the spreading of GSM beams with edge dislocation in atmospheric turbulence is stressed. It shows that the spreading of the intensity profile of GSM beams with edge dislocation along a slant path is smaller than that along a horizontal path in the long-distance atmospheric propagation. The larger the slope |p| and the smaller the off-axis distance |d| are, the less the beam-width spreading and angular spread of GSM beams with edge dislocation are affected by turbulence. The CSM beams with edge dislocation is less affected by turbulence than that of GSM beams without edge dislocation. The results are illustrated numerically and their validity is interpreted physically.
基金Project supported by the National Natural Science Foundation of China(Nos.12172048 and 12027901)the National Science and Technology Major Project of China(Nos.2019-Ⅶ-0007-0147 and 2017-Ⅵ-0020-0093)。
文摘The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.
基金The Natural Science Foundation of Shandong Province of China under contract Nos ZR2022MA051 and ZR2020MA090the National Natural Science Foundation of China under contract No.U22A2012+2 种基金China Postdoctoral Science Foundation under contract No.2020M670891the SDUST Research Fund under contract No.2019TDJH103the Talent Introduction Plan for Youth Innovation Team in universities of Shandong Province(innovation team of satellite positioning and navigation)。
文摘With the development of ultra-wide coverage technology,multibeam echo-sounder(MBES)system has put forward higher requirements for localization accuracy and computational efficiency of ray tracing method.The classical equivalent sound speed profile(ESSP)method replaces the measured sound velocity profile(SVP)with a simple constant gradient SVP,reducing the computational workload of beam positioning.However,in deep-sea environment,the depth measurement error of this method rapidly increases from the central beam to the edge beam.By analyzing the positioning error of the ESSP method at edge beam,it is discovered that the positioning error increases monotonically with the incident angle,and the relationship between them could be expressed by polynomial function.Therefore,an error correction algorithm based on polynomial fitting is obtained.The simulation experiment conducted on an inclined seafloor shows that the proposed algorithm exhibits comparable efficiency to the original ESSP method,while significantly improving bathymetry accuracy by nearly eight times in the edge beam.
基金supported by the National Natural Science Foundation of China(Grant No.91738101)Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX04)Interdisciplinary Major Project of School of Information Science and Technology,Tsinghua University(Grant No.20031887521).
文摘Constrained by orbital configuration and spectrum sharing,non-geostationary orbit(NGEO)satellites may be interfered when they are in the beam range of geostationary orbit(GEO)satellite.However,it is difficult for NGEO operators to determine the signal source.Herein,we propose a method to locate the GEO signal source and estimate beam features,including beam pointing azimuth,elevation,and beamwidth,by the beam edge positions.We transform this estimation problem into two optimization problems by minimizing the estimation error,and solve both of them through a multi-variable joint iteration method with acceptable computation complexity.Numerical results show that when NGEO satellites pass through the beam twice,the longitude estimation error is about 0.01 degree,and the estimation results will be more and more accurate as the number of passing times increases.Besides,the proposed method is also effective when there are kilometer-level errors in beam edge positions.