期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Colorless to black switching with high contrast ratio via the electrochemical process of a hybrid organic-inorganic perovskite
1
作者 Ming Xu Jianmin Gu +5 位作者 Zixun Fang Yu Li Xing Wang Xiaoyu Zhao Tifeng Jiao Wei Wang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期90-100,共11页
Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the t... Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices. 展开更多
关键词 colorless to black switching electrochemical process high integrated contrast ratio hybrid organic-inorganic perovskite switchable devices
下载PDF
Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes 被引量:1
2
作者 Binbin Jia Baohong Zhang +3 位作者 Zhi Cai Xiuyi Yang Lidong Li Lin Guo 《eScience》 2023年第2期60-76,共17页
Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomater... Amorphous nanomaterials have emerged as potential candidates for energy storage and conversion owing to their amazing physicochemical properties.Recent studies have proved that the manipulation of amorphous nanomaterials can further enhance electrochemical performance.To date,various feasible strategies have been proposed,of which amorphous/crystalline(a-c)heterointerface engineering is deemed an effective approach to break through the inherent activity limitations of electrode materials.The following review discusses recent research progress on a-c heterointerfaces for enhanced electrochemical processes.The general strategies for synthesizing ac heterojunctions are first summarized.Subsequently,we highlight various advanced applications of a-c heterointerfaces in the field of electrochemistry,including for supercapacitors,batteries,and electrocatalysts.We also elucidate the synergistic mechanism of the crystalline phase and amorphous phase for electrochemical processes.Lastly,we summarize the challenges,present our personal opinions,and offer a critical perspective on the further development of a-c nanomaterials. 展开更多
关键词 NANOCOMPOSITES Amorphous/crystalline heterogeneous interfaces Synthetic strategy electrochemical process
原文传递
De-colorization of Reactive Brilliant Orange X-GN by a novel rotating electrochemical disc process 被引量:3
3
作者 Zhong Dengjie Yang Ji +3 位作者 Xu Yunlan Jia Jinping Wang Yalin Sun Tonghua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第8期927-932,共6页
A novel electrochemical setup for wastewater treatment-rotating electrochemical disc process(RECDP)was developed in this article. The anode and cathode are distributed alternatively and evenly on a flat round disc,whi... A novel electrochemical setup for wastewater treatment-rotating electrochemical disc process(RECDP)was developed in this article. The anode and cathode are distributed alternatively and evenly on a flat round disc,which was designed to improve mass transfer of organics from bulk solution to electrode surface,while at the same time increasing oxygen transfer from air to the liquid to benefit the organics oxidization.The color removal of dye Reactive Brilliant Orange X-GN(RBO)was experimentally investigate... 展开更多
关键词 electrochemistry de-colorization dye wastewater rotating electrochemical disc process(RECDP)
下载PDF
Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N 被引量:2
4
作者 Dong-hua Tian Zhen-chao Han +1 位作者 Ming-yong Wang Shu-qiang Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1687-1694,共8页
Graphite materials are widely used as electrode materials for electrochemical energy storage.N-doping is an effective method for enhancing the electrochemical properties of graphite.A novel one-step N-doping method fo... Graphite materials are widely used as electrode materials for electrochemical energy storage.N-doping is an effective method for enhancing the electrochemical properties of graphite.A novel one-step N-doping method for complete and compact carbon paper was proposed for molten salt electrolysis in the Li Cl-KCl-Li3 N system.The results show that the degree of graphitization of carbon paper can be improved by the electrolysis of molten salts,especially at 2.0 V.Nitrogen gas was produced at the anode and nitrogen atoms can substitute carbon atoms of carbon paper at different sites to create nitrogen doping during the electrolysis process.The doping content of N in carbon paper is up to 13.0 wt%.There were three groups of nitrogen atoms,i.e.quaternary N(N-Q),pyrrolic N(N-5),and pyridinic N(N-6)in N-doping carbon paper.N-doping carbon paper as an Al-ion battery cathode shows strong charge-recharge properties. 展开更多
关键词 N-DOPING carbon paper molten salt electrolysis electrochemical process
下载PDF
Degradation and detoxification mechanisms of organophosphorus flame retardant tris(1,3-dichloro-2-propyl)phosphate(TDCPP)during electrochemical oxidation process
5
作者 Shaoyu Tang Zhujun Luo +3 位作者 Jianbo Liao Zhun Liu Lei Xu Junfeng Niu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期270-274,共5页
Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl)phosphate(TDCPP)by using Ti/SnO_(2)-Sb/La-PbO_(2)as anode was investigated for the first time,and the degradation mechanisms and toxicity changes of the ... Electrochemical oxidation of aqueous tris(1,3-dichloro-2-propyl)phosphate(TDCPP)by using Ti/SnO_(2)-Sb/La-PbO_(2)as anode was investigated for the first time,and the degradation mechanisms and toxicity changes of the degradation intermediates were further determined.Results suggested that electrochemical degradation of TDCPP followed pseudo-first-order kinetics,and the reaction rate constant(k)was 0.0332 min^(−1)at the applied current density of 10 mA/cm^(2)and Na_(2)SO_(4)concentration of 10 mmol/L.There was better TDCPP degradation performance at higher current density.Free hydroxy radical(•OH)was proved to play dominant role in TDCPP oxidation via quenching experiment,with a relative contribution rate of 60.1%.A total of five intermediates(M1,C_(6)H_(11)Cl_(4)O_(4)P;M2,C_(3)H_(7)Cl_(2)O_(4)P;M3,C_(9)H_(16)Cl_(5)O_(5)P;M4,C_(9)H_(14)Cl_(5)O_(6)P;M5,C_(6)H_(10)Cl_(3)O_(6)P)were identified,and the intermediates were further degraded prolonging with the reaction time.Flow cytometer results suggested that the toxicity of TDCPP and degradation intermediates significantly reduced,and the detoxification efficiency was achieved at 78.1%at 180 min.ECOSAR predictive model was used to assess the relative toxicity of TDCPP and the degradation intermediates.The EC_(50)to green algae was 3.59 mg/L for TDCPP,and the values raised to 84,574,54.6,391,and 8920 mg/L for M1,M2,M3,M4,and M5,respectively,indicating that the degradation intermediates are less toxic or not toxic.Electrochemical advanced oxidation process is a valid technology to degrade TDCPP and pose a good detoxification effect. 展开更多
关键词 electrochemical oxidation process Organophosphorus flame retardants Degradation mechanisms MINERALIZATION DETOXIFICATION
原文传递
Influence of MnO_(x)deposition on TiO_(2)nanotube arrays for electrooxidation
6
作者 Kaihang Zhang Yuanzheng Zhang +6 位作者 Su Liu Xin Tong Junfeng Niu Dong Wang Junchen Yan Zhaoyang Xiong John Crittenden 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期612-618,共7页
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el... TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs. 展开更多
关键词 TiO_(2)nanotube arrays Oxidation mechanism Energy efficiency assessment MnO_(x)band structure electrochemical advanced oxidation processes
下载PDF
In situ coagulation-electrochemical oxidation of leachate concentrate:A key role of cathodes
7
作者 Huankai Li Qian Zeng +2 位作者 Feixiang Zan Sen Lin Tianwei Hao 《Environmental Science and Ecotechnology》 SCIE 2023年第4期168-176,共9页
To efficiently remove organic and inorganic pollutants from leachate concentrate,an in situ coagulation-electrochemical oxidation(CO-EO)system was proposed using Ti/Ti_(4)O_(7)anode and Al cathode,coupling the“super-... To efficiently remove organic and inorganic pollutants from leachate concentrate,an in situ coagulation-electrochemical oxidation(CO-EO)system was proposed using Ti/Ti_(4)O_(7)anode and Al cathode,coupling the“super-Faradaic”dissolution of Al.The system was evaluated in terms of the removal efficiencies of organics,nutrients,and metals,and the underlying cathodic mechanisms were investigated compared with the Ti/RuO_(2)-IrO_(2)and graphite cathode systems.After a 3-h treatment,the Al-cathode system removed 89.0%of COD and 36.3%of total nitrogen(TN).The TN removal was primarily ascribed to the oxidation of both ammonia and organic-N to N_(2).In comparison,the Al-cathode system achieved 3-10-fold total phosphorus(TP)(62.6%)and metal removals(>80%)than Ti/RuO_(2)-IrO_(2)and graphite systems.The increased removals of TP and metals were ascribed to the in situ coagulation of Al(OH)_(3),hydroxide precipitation,and electrodeposition.With the reduced scaling on the Al cathode surface,the formation of Al^(3+)and electrified Al(OH)_(3)lessened the requirement for cathode cleaning and increased the bulk conductivity,resulting in increased instantaneous current production(38.9%)and operating cost efficiencies(48.3 kWh kg_(COD)^(−1)).The present study indicated that the in situ CO-EO process could be potentially used for treating persistent wastewater containing high levels of organic and inorganic ions. 展开更多
关键词 Leachate concentrate electrochemical process in situ coagulation treatment Cathode material Removal mechanism
原文传递
A Review of Solid Electrolyte Interphase(SEI)and Dendrite Formation in Lithium Batteries
8
作者 Borong Li Yu Chao +10 位作者 Mengchao Li Yuanbin Xiao Rui Li Kang Yang Xiancai Cui Gui Xu Lingyun Li Chengkai Yang Yan Yu David P.Wilkinson Jiujun Zhang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期680-725,共46页
Lithium-metal batteries with high energy/power densities have significant applications in electronics,electric vehicles,and stationary power plants.However,the unstable lithium-metal-anode/electrolyte interface has in... Lithium-metal batteries with high energy/power densities have significant applications in electronics,electric vehicles,and stationary power plants.However,the unstable lithium-metal-anode/electrolyte interface has induced insufficient cycle life and safety issues.To improve the cycle life and safety,understanding the formation of the solid electrolyte interphase(SEI)and growth of lithium dendrites near the anode/electrolyte interface,regulating the electrodeposition/electrostripping processes of Li^(+),and developing multiple approaches for protecting the lithium-metal surface and SEI layer are crucial and necessary.This paper comprehensively reviews the research progress in SEI and lithium dendrite growth in terms of their classical electrochemical lithium plating/stripping processes,interface interaction/nucleation processes,anode geometric evolution,fundamental electrolyte reduction mechanisms,and effects on battery performance.Some important aspects,such as charge transfer,the local current distribution,solvation,desolvation,ion diffusion through the interface,inhibition of dendrites by the SEI,additives,models for dendrite formation,heterogeneous nucleation,asymmetric processes during stripping/plating,the host matrix,and in situ nucleation characterization,are also analyzed based on experimental observations and theoretical calculations.Several technical challenges in improving SEI properties and reducing lithium dendrite growth are analyzed.Furthermore,possible future research directions for overcoming the challenges are also proposed to facilitate further research and development toward practical applications. 展开更多
关键词 Lithium-metal anode Solid electrolyte interphase(SEI) Dendrite formation Lithium batteries Classical electrochemical processes Additives Heterogeneous nucleation Asymmetric processes Solvation structure DESOLVATION In situ characterization of nucleation
下载PDF
Effects of zinc-substituted nano-hydroxyapatite coatings on bone integration with implant surfaces 被引量:7
9
作者 Shi-fang ZHAO Wen-jing DONG +3 位作者 Qiao-hong JIANG Fu-ming HE Xiao-xiang WANG Guo-li YANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2013年第6期518-525,共8页
Objective:The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite(Zn-HA) coating,applied by an electrochemical process,on implant osseointegraton in a rabbit model.Methods:A ... Objective:The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite(Zn-HA) coating,applied by an electrochemical process,on implant osseointegraton in a rabbit model.Methods:A Zn-HA coating or an HA coating was deposited using an electrochemical process.Surface morphology was examined using field-emission scanning electron microscopy.The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer(XRD) and Fourier transform infrared spectroscopy(FTIR).A total of 78 implants were inserted into femurs and tibias of rabbits.After two,four,and eight weeks,femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque(RTQ) tests.Results:Rod-like HA crystals appeared on both implant surfaces.The dimensions of the Zn-HA crystals seemed to be smaller than those of HA.XRD patterns showed that the peaks of both coatings matched well with standard HA patterns.FTIR spectra showed that both coatings consisted of HA crystals.The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks(P<0.05),the bone to implant contact(BIC) at four weeks(P<0.05),and RTQ values after four and eight weeks(P<0.05).Conclusions:The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface. 展开更多
关键词 ZINC Hydroxyapatite coating electrochemical process OSSEOINTEGRATION IMPLANT
原文传递
Assessment of solar-assisted electrooxidation of bisphenol AF and bisphenol A on boron-doped diamond electrodes
10
作者 Jing Ding Lingjun Bu +5 位作者 Bingxin Cui Guanshu Zhao Qingwei Gao Liangliang Wei Qingliang Zhao Dionysios D.Dionysiou 《Environmental Science and Ecotechnology》 2020年第3期23-31,共9页
Bisphenol(BP)analogues in wastewater effluent and groundwater pose a potential threat to human health due to their ability to disrupt steroidogenesis.A new solar-assisted electrochemical process(SECP)was developed and... Bisphenol(BP)analogues in wastewater effluent and groundwater pose a potential threat to human health due to their ability to disrupt steroidogenesis.A new solar-assisted electrochemical process(SECP)was developed and evaluated for the degradation of BP analogues.The effects of quenchers,current density,initial pH,supporting electrolyte,and aqueous matrix on the removal kinetics of bisphenol AF(BPAF)and bisphenol A(BPA)were investigated.The kinetic constants of BPAF,BPA,and bisphenol S(BPS)in the SECP with irradiation intensity of 500 mW cm^(-2) were 0.017±0.002 min^(-1),0.022±0.002 min^(-1),and 0.012±0.001 min^(-1),respectively.The changes in the degradation rates of BPAF,BPA,and BPS in the presence of quenchers indicated the relative contribution of hydroxyl radical(·OH)oxidation,anodic electrolysis,and singlet(^(1)O_(2))oxygenation in the degradation of BPs in the SECP.The enhanced rate of generation of ·OH and ^(1)O_(2) was observed in the SECP compared with those in the conventional electrochemical system.The identification of the transformation products(TPs)of BPAF demonstrated that hydroxylation,ring cleavage,b-scission,and defluorination were the major processes during the oxidation in the SECP.The conversion to fluoride ions(76%)and mineralization of total organic carbon(72%)in the SECP indicated further degradation of TPs.The results from this study improved our understanding of the degradation of BP analogues in the electrooxidation irradiated by solar light and help to establish the application potential of the SECP for the effective degradation of emerging contaminants in wastewater. 展开更多
关键词 electrochemical process SOLAR RADICALS Bisphenol AF Wastewater treatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部